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A STUDY OF HARMONICITY ON COTANGENT BUNDLE

WITH BERGER-TYPE DEFORMED SASAKI METRIC OVER

STANDARD KÄHLER MANIFOLD

Kheireddine Biroud and Abderrahim Zagane

Abstract. In this paper, we present some results concerning the har-
monicity on the cotangent bundle equipped with the Berger-type de-

formed Sasaki metric over standard Kähler manifolds. We establish nec-

essary and sufficient conditions under which a covector field is harmonic
map or is harmonic covector with respect to the Berger-type deformed

Sasaki metric and we construct some examples of harmonic covector
fields. We also study the harmonicity of a covector field along a map be-

tween Riemannian manifolds, the target manifold being standard Kähler

equipped with the Berger-type deformed Sasaki metric on its cotangent
bundle. After that, we discuss the harmonicity of the composition of the

projection map of the cotangent bundle of a Riemannian manifold with

a map from this manifold into another Riemannian manifold, the source
manifold being standard Kähler whose cotangent bundle is endowed with

the Berger-type deformed Sasaki metric.

1. Introduction

In this field, one of the first works which deal with the cotangent bundles of
a manifold as a Riemannian manifold is that of Patterson and Walker [16], who
constructed from an affine symmetric connection on a manifold a Riemannian
metric on the cotangent bundle, which they call the Riemann extension of
the connection. A generalization of this metric had been given by Sekizawa
[17] in his classification of natural transformations of affine connections on
manifolds to metrics on their cotangent bundles, obtaining the class of natural
Riemann extensions which is a 2-parameter family of metrics, and which had
been intensively studied by many authors. On the other hand, inspired by
the concept of g-natural metrics on tangent bundles of Riemannian manifolds,
Ağca considered another class of metrics on cotangent bundles of Riemannian
manifolds, that she called g-natural metrics [1]. Also, there are studies by other
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authors, Ağca and Salimov [2], Yano and Ishihara [19], Gezer and Altunbas [11].
In other direction, Yampolsky [18] proposed the Berger-type deformed Sasaki
metric on tangent bundle over a Kählerian (standard Kähler) manifold, which
was studied by Altunbas and collaborators in [3]. The study of the Berger-type
deformed Sasaki metric on the tangent bundle or on the cotangent bundle are
not limited to those mentioned above. We also refer to new studies by Zagane
among which we refer [21–25].

In a previous work, [26], we proposed the Berger-type deformed Sasaki met-
ric on the cotangent bundle over standard Kähler manifolds, where we studied
some geodesic properties on the cotangent bundle with respect to this met-
ric. In this paper, after the introduction and preliminaries, in section 3, we
present the Berger-type deformed Sasaki metric on the cotangent bundle T ∗M
over a standard Kähler manifold (M2m, J, g) and the Levi-Civita connection
(Theorem 3.1). In section 4, we study of the harmonicity with respect to the
Berger-type deformed Sasaki metric. First, we investigate the harmonicity of
a covector field and we establish the necessary and sufficient conditions under
which a covector field is harmonic map or is harmonic covector field (Theorem
4.6, Theorem 4.7 and Theorem 4.10). We also construct some examples of har-
monic vector fields (Example 4.11 and Example 4.12). Secondly, we also study
the harmonicity of a covector field along a map between Riemannian manifolds,
the target manifold being standard Kähler equipped with the Berger-type de-
formed Sasaki metric on its cotangent bundle (Theorem 4.17 and Theorem
4.18). Finally, we study the harmonicity of the composition of the projection
map of the cotangent bundle of a Riemannian manifold with a map from this
manifold into another Riemannian manifold, the source manifold being stan-
dard Kähler whose cotangent bundle is endowed with the Berger-type deformed
Sasaki metric (Theorem 4.20 and Theorem 4.21).

2. Preliminaries

Let (Mm, g) be an m-dimensional Riemannian manifold, T ∗M be its cotan-
gent bundle and π : T ∗M → M be the natural projection. A local chart
(U, xi)i=1,m onM induces a local chart (π−1(U), xi, xī = pi)ī=m+1,2m on T ∗M ,
where pi is the component of covector p in each cotangent space T ∗

xM , x ∈ U
with respect to the natural coframe {dxi}, denoted by ∂i =

∂
∂xi and ∂ī =

∂
∂xī .

Let C∞(M) (resp., C∞(T ∗M)) be the ring of real-valued C∞ functions on
M(resp. T ∗M) and ℑr

s(M) (resp., ℑr
s(T

∗M)) be the module over C∞(M)
(resp. C∞(T ∗M)) of C∞ tensor fields of type (r, s). Denote by Γk

ij the Christof-
fel symbol of g and by ∇ the Levi-Civita connection of g.

The Levi Civita connection ∇ defines a direct sum decomposition

TT ∗M = V T ∗M ⊕HT ∗M(1)

of the tangent bundle to T ∗M at any (x, p) ∈ T ∗M into vertical subspace

V(x,p)T
∗M = Ker(dπ(x,p)) = {ωi∂ī|(x,p), ωi ∈ R},
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and the horizontal subspace

H(x,p)T
∗M = {Xi∂i|(x,p) +XipaΓ

a
hi∂h̄|(x,p), Xi ∈ R}.

Note that the map X → HX = Xi∂i|(x,p) + XipaΓ
a
hi∂h̄|(x,p) is an isomor-

phism between the vector spaces TxM and H(x,p)T
∗M . Similarly, the map

ω → Vω = ωi∂ī|(x,p) is an isomorphism between the vector spaces T ∗
xM and

V(x,p)T
∗M . Obviously, each tangent vector Z ∈ T(x,p)T

∗M can be written in

the form Z = HX + Vω, where X ∈ TxM and ω ∈ T ∗
xM are uniquely deter-

mined.
Let X = Xi∂i and ω = ωidx

i be local expressions in (U, xi)i=1,m, of a

vector and covector (1-form) field X ∈ ℑ1
0(M) and ω ∈ ℑ0

1(M), respectively.
Then the horizontal lift HX ∈ ℑ1

0(T
∗M) of X ∈ ℑ1

0(M) and the vertical lift
Vω ∈ ℑ1

0(T
∗M) of ω ∈ ℑ0

1(M) are defined, respectively by

HX =Xi∂i + phΓ
h
ijX

j∂ī,(2)

Vω =ωi∂ī,(3)

with respect to the natural frame {∂i, ∂ī} (see [19] for more details).
From (2) and (3), we see that H(∂i) and V(dxi) have respectively local ex-

pressions of the form

H(∂i) = ∂i + paΓ
a
hi∂h̄,

V(dxi) = ∂ī.

The set of vector fields {H(∂i)} on π−1(U) defines a local frame for HT ∗M
over π−1(U) and the set of vector fields {V(dxi)} on π−1(U) defines a local
frame for V T ∗M over π−1(U). The set {H(∂i), V(dxi)} defines a local frame on
T ∗M , adapted to the direct sum decomposition (1).

Let (M, g) be a Riemannian manifold, we define the map

ℑ0
1(M) → ℑ1

0(M)

ω 7→ ω̃

by g(ω̃,X) = ω(X), for all X ∈ ℑ1
0(M). Locally for all ω = ωidx

i ∈ ℑ0
1(M),

we have ω̃ = gijωi∂j , where (gij) is the inverse matrix of the matrix (gij).
For each x ∈ M the scalar product g−1 = (gij) is defined on the cotangent

space T ∗
xM by g−1(ω, θ) = g(ω̃, θ̃) = gijωiθj . In this case we have ω̃ = g−1 ◦ω.

3. Berger-type deformed Sasaki metric

Let Mr be an r-dimensional differentiable manifold. An almost complex
structure J on M is a (1, 1)-tensor field on M such that J2 = −I (I is the
(1, 1)-identity tensor field on M ). The pair (Mr, J) is called an almost com-
plex manifold. Since every almost complex manifold is even dimensional, we
will take r = 2m. Also, note that every complex manifold (topological space
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endowed with a holomorphic atlas) carries a natural almost complex structure
[14]. An almost complex structure J on M is integrable if the Nijenhuis tensor

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X,JY ]− [X,Y ]

vanishes identically on M for all vector fields X,Y ∈ ℑ1
0(M). Moreover, an

almost complex structure J on M is integrable if and only if M admits a
symmetric almost complex linear connection [5, 14].

On an almost complex manifold (M2m, J), a Hermitian metric is a Riemann-
ian metric g on M such that

g(JX, Y ) = −g(X, JY ) ⇔ g(JX, JY ) = g(X,Y ),

or equivalently [26]

g−1(ωJ, θ) = −g−1(ω, θJ) ⇔ g−1(ωJ, θJ) = g−1(ω, θ),(4)

for all X,Y ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M).
The almost complex manifold (M2m, J) having the Hermitian metric g is

called an almost Hermitian manifold. Let (M2m, J, g) be an almost Hermitian
manifold. We define the fundamental or Kähler 2-form Ω on M by

Ω(X,Y ) = g(X, JY )

for any vector fields X and Y on M . A Hermitian metric g on an almost
Hermitian manifoldM2m is called a standard Kähler metric if the fundamental
2-form Ω is closed, i.e., dΩ = 0. In the case, the triple (M2m, J, g) is called an
almost standard Kähler manifold. If the almost complex structure is integrable,
then the triple (M2m, J, g) is called a standard Kähler manifold. Moreover, the
following conditions are equivalent:

(1) ∇J = 0, (∇ is the Levi-Civita connection of g)
(2) ∇Ω = 0,
(3) NJ = 0 and dΩ = 0 [14].

As a result, the almost Hermitian manifold (M2m, J, g) is a standard Kähler
manifold if and only if ∇J = 0. Using the formula

ω(∇XJ) = ∇X(ωJ)− (∇Xω)J

for all X ∈ ℑ1
0(M), ω ∈ ℑ0

1(M), we have also the almost Hermitian manifold
(M2m, J, g) is a standard Kähler manifold if and only if

(5) ∇X(ωJ) = (∇Xω)J

for all X ∈ ℑ1
0(M), ω ∈ ℑ0

1(M).

Definition. [26] Let (M2m, J, g) be an almost Hermitian manifold and T ∗M be
its tangent bundle. A fiber-wise Berger-type deformation of the Sasaki metric
noted BSg is defined on T ∗M by

BSg(HX,HY ) = g(X,Y ),

BSg(HX, Vθ) = 0,
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BSg(Vω, Vθ) = g−1(ω, θ) + δ2g−1(ω, pJ)g−1(θ, pJ)

for all X,Y ∈ ℑ1
0(M), ω, θ ∈ ℑ0

1(M), where δ is some constant. (For anti-
paraKähler manifold, see [21–23]).

In the following, we put λ = 1 + δ2α and α = g−1(p, p) = |p|2, where | · |
denotes the norm with respect to g−1.

Theorem 3.1. [26] Let (M2m, J, g) be a standard Kähler manifold and T ∗M
its cotangent bundle equipped with the Berger-type deformed Sasaki metric
BSg. Then we have the following formulas.

(i) BS∇HX
HY = H(∇XY ) +

1

2
V(pR(X,Y )),

(ii) BS∇HX
Vθ = V(∇Xθ) +

1

2

(
H(R(p̃, θ̃)X) + δ2g−1(θ, pJ)H(R(Jp̃, p̃)X)

)
,

(iii) BS∇Vω
HY =

1

2

(
H(R(p̃, ω̃)Y ) + δ2g−1(ω, pJ)H(R(Jp̃, p̃)Y )

)
,

(iv) BS∇Vω
Vθ = δ2

(
g−1(ω, pJ)V(θJ) + g−1(θ, pJ)V(ωJ)

)
− δ4

λ

(
g−1(ω, pJ)g−1(θ, p) + g−1(ω, p)g−1(θ, pJ)

)
V(pJ),

for all X,Y ∈ ℑ1
0(M) and ω, θ ∈ ℑ0

1(M), where ∇ is the Levi-Civita connection
of (M2m, J, g) and R is its curvature tensor.

4. Berger-type deformed Sasaki metric and Harmonicity

Let Φ : (Mm, g) → (Nn, h) be a smooth map between two Riemannian
manifolds. The map Φ is said to be harmonic if it is a critical point of the
energy functional

(6) E(Φ,K) =

∫
K

e(Φ) vg

for any compact domain K ⊆M . Here

(7) e(Φ) :=
1

2
Trg h(dΦ, dΦ)

is the energy density of Φ and vg is the Riemannian volume form on M . For

any smooth 1-parameter variation {Φt}t∈I of Φ with Φ0 = Φ and V =
d

dt
Φt

∣∣∣
t=0

[10, 13], we have

(8)
d

dt
E(Φt)

∣∣∣
t=0

= −
∫
K

h(τ(Φ), V )vg.

Then, Φ is harmonic if it satisfies the associated Euler-Lagrange equations given
by the following formula:

(9) 0 = τ(Φ) := Trg∇dΦ,
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where τ(Φ) is the tension field of Φ. For more details see [8–10,12,15]. In recent
years, this theme has been widely developed even on the tangent bundle and
on the cotangent bundle has been done by many authors, see [4, 6, 25,27–29].

4.1. Harmonicity of a covector field

A covector field ω ∈ ℑ0
1(M) on (M2m, J, g) can be regarded as the immersion

ω : (M2m, J, g) → (T ∗M,BSg)

x 7→ (x, ωx)

into its cotangent bundle T ∗M equipped with the Berger-type deformed Sasaki
metric BSg.

Lemma 4.1 ([20]). Let (Mm, g) be a Riemannian manifold. If ω is a covector
field (1-form) on M and (x, p) ∈ T ∗M such that ωx = p, then we have

dxω(Xx) =
HX(x,p) +

V(∇Xω)(x,p)(10)

for any X ∈ ℑ1
0(M), where ∇ denotes the Levi-Civita connection of (Mm, g).

Lemma 4.2. Let (M2m, J, g) be a standard Kähler manifold, ω be a covector
field on M . Then the following equation is satisfied:

g−1(∆̄ω, ω) = |∇ω|2 − 1

2
∆(|ω|2),(11)

where ∆̄ω = −Trg(∇∗∇∗ −∇∇∗∗)ω is the rough Laplacian of ω and ∆ is the
ordinary Laplace-Beltrami operator acting on functions.

Proof. Let {ei}i=1,m be a local orthonormal frame on M , then we have

g−1(∆̄ω, ω) =− g−1(Trg(∇∗∇∗ −∇∇∗∗)ω, ω)

=−
m∑
i=1

(
g−1(∇ei∇eiω, ω)− g−1(∇∇ei

eiω, ω)
)

=−
m∑
i=1

(
ei(g

−1(∇eiω, ω))− g−1(∇eiω,∇eiω)

− 1

2
∇eiei(g

−1(ω, ω))
)

=−
m∑
i=1

(1
2
eiei(|ω|2)− |∇eiω|2 −

1

2
∇eiei(|ω|2)

)
= |∇ω|2 − 1

2
∆(|ω|2). □

Lemma 4.3. Let (M2m, J, g) be a standard Kähler manifold, ω be a covector
field on M . Then the following equation is satisfied:

∆̄(fω) = f∆̄ω − (∆f)ω − 2∇gradfω,(12)

where f is a smooth function of M and gradf is the gradient of f .



HARMONICITY ON COTANGENT BUNDLE 933

Proof. Let {ei}i=1,m be a local orthonormal frame on M . Then we have

∆̄(fω) = −
m∑
i=1

(
∇ei∇ei(fω)−∇∇ei

ei(fω)
)

= −
m∑
i=1

(
∇ei(ei(f)ω + f∇eiω)−∇eiei(f)ω − f∇∇ei

eiω
)

= −
m∑
i=1

(
eiei(f)ω + ei(f)∇eiω + ei(f)∇eiω + f∇ei∇eiω

−∇eiei(f)ω − f∇∇ei
eiω

)
= −

m∑
i=1

(
(eiei(f)−∇eiei(f))ω + 2∇ei(f)eiω + f(∇ei∇ei −∇∇ei

ei)ω
)

= f∆̄ω − (∆f)ω − 2∇gradfω. □

Lemma 4.4. Let (M2m, J, g) be a standard Kähler manifold and (T ∗M,BSg)
be its cotangent bundle equipped with the Berger-type deformed Sasaki metric.
If ω is covector field on M , then the energy density associated to ω is given by

e(ω) = m+
1

2
|∇ω|2 + δ2

2
Trg g

−1(∇∗ω, ωJ)
2.(13)

Proof. Let (x, p) ∈ T ∗M , ω ∈ ℑ0
1(M), ωx = p and {ei}i=1,2m be a local

orthonormal frame on M , then, from (7), we have

e(ω)x =
1

2
Trg

BSg(dω, dω)(x,p)

=
1

2

2m∑
i=1

BSg(dω(ei), dω(ei))(x,p).

Using (10), we obtain

e(ω) =
1

2

2m∑
i=1

BSg(Hei +
V(∇eiω),

Hei +
V(∇eiω))

=
1

2

2m∑
i=1

(
BSg(Hei,

Hei) +
BSg(V(∇eiω),

V(∇eiω))
)

=
1

2

2m∑
i=1

(
g(ei, ei) + g−1(∇eiω,∇eiω) + δ2g−1(∇eiω, ωJ)

2
)

=m+
1

2
|∇ω|2 + δ2

2
Trg g

−1(∇∗ω, ωJ)
2. □

Theorem 4.5. Let (M2m, J, g) be a standard Kähler manifold and (T ∗M,BSg)
its cotangent bundle equipped with the Berger-type deformed Sasaki metric. If



934 K. BIROUD AND A. ZAGANE

ω is a covector field on M , then the tension field associated to ω is given by

τ(ω) =H
(
Trg

[
R(ω̃, ∇̃∗ω) ∗+δ2g−1(∇∗ω, ωJ)R(Jω̃, ω̃) ∗

])
+ V

(
2δ2Trg

[
g−1(∇∗ω, ωJ)

(
∇∗(ωJ)−

δ2

λ
g−1(∇∗ω, ω)ωJ

)]
− ∆̄ω

)
(14)

where λ = 1 + δ2|ω|2 and ∆̄ω = −Trg(∇∗∇∗ −∇∇∗∗)ω.

Proof. Let (x, p) ∈ T ∗M , ω ∈ ℑ0
1(M), ωx = p and {ei}i=1,2m be a local

orthonormal frame on M , then, from (9), we have

τ(ω)x =Trg(∇dω)x

=

2m∑
i=1

(
(∇ω

eidω(ei))x − dxω(∇eiei)x
)

=

2m∑
i=1

(
(BS∇dω(ei)dω(ei))(x,p) −

H(∇eiei)(x,p) − V(∇(∇ei
ei)ω)(x,p)

)
=

2m∑
i=1

(
BS∇(Hei+V(∇ei

ω))(
Hei +

V(∇eiω))− H(∇eiei)− V(∇(∇ei
ei)ω)

)
(x,p)

=

2m∑
i=1

(
BS∇Hei

Hei +
BS∇Hei

V(∇eiω) +
BS∇V(∇ei

ω)
Hei

+ BS∇V(∇ei
ω)

V(∇eiω)− H(∇eiei)− V(∇(∇ei
ei)ω)

)
(x,p)

.

Using Theorem 3.1 and (5), we obtain

τ(ω) =

2m∑
i=1

(
H(∇eiei)−

1

2
V(ωR(ei, ei)) +

V(∇ei∇eiω)

+
1

2
H(R(ω̃, ∇̃eiω)ei) +

δ2

2
g−1(∇eiω, ωJ)

H(R(Jω̃, ω̃)ei)

+
1

2
H(R(ω̃, ∇̃eiω)ei) +

δ2

2
g−1(∇eiω, ωJ)

H(R(Jω̃, ω̃)ei)

+ δ2g−1(∇eiω, ωJ)
V((∇eiω)J) + δ2g−1(∇eiω, ωJ)

V((∇eiω)J)

− δ4

λ
g−1(∇eiω, ωJ)g

−1(∇eiω, ω)
V(ωJ)− H(∇eiei)

− δ4

λ
g−1(∇eiω, ω)g

−1(∇eiω, ωJ)
V(ωJ)− V(∇(∇ei

ei)ω)
)

=

2m∑
i=1

(
H(R(ω̃, ∇̃eiω)ei) + δ2g−1(∇eiω, ωJ)

H(R(Jω̃, ω̃)ei)

+ V(∇ei∇eiω)− V(∇(∇ei
ei)ω) + 2δ2g−1(∇eiω, ωJ)

V(∇ei(ωJ))

− 2δ4

λ
g−1(∇eiω, ωJ)g

−1(∇eiω, ω)
V(ωJ)

)
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=H
(
Trg

[
R(ω̃, ∇̃∗ω) ∗+δ2g−1(∇∗ω, ωJ)R(Jω̃, ω̃) ∗

])
+ V

(
2δ2Trg

[
g−1(∇∗ω, ωJ)

(
∇∗(ωJ)−

δ2

λ
g−1(∇∗ω, ω)ωJ

)]
− ∆̄ω

)
. □

Theorem 4.6. Let (M2m, J, g) be a standard Kähler manifold and (T ∗M,BSg)
its cotangent bundle equipped with the Berger-type deformed Sasaki metric. If ω
is a covector field on M , then ω is a harmonic map if and only if the following
conditions are verified:

Trg
[
R(ω̃, ∇̃∗ω) ∗+δ2g−1(∇∗ω, ωJ)R(Jω̃, ω̃) ∗

]
= 0,

and

2δ2Trg
[
g−1(∇∗ω, ωJ)

(
∇∗(ωJ)−

δ2

λ
g−1(∇∗ω, ω)ωJ

)]
= ∆̄ω.

Proof. The statement is a direct consequence of Theorem 4.5. □

Let (M2m, J, g) be a compact oriented standard Kähler manifold, (T ∗M,BSg)
its cotangent bundle equipped with the Berger-type deformed Sasaki metric and
ω a covector field on M . The energy E(ω) of ω is defined to be the energy of
the corresponding map ω : (M2m, J, g) → (T ∗M,BSg). More precisely, from
(13), we get

E(ω) =

∫
M

e(ω)vg

=

∫
M

(
m+

1

2
|∇ω|2 + δ2

2
Trgg

−1(∇∗ω, ωJ)
2
)
vg

=mV ol(M) +
1

2

∫
M

|∇ω|2vg + δ2

2

∫
M

Trgg
−1(∇∗ω, ωJ)

2vg.

Definition. Let (M2m, J, g) be a standard Kähler manifold, (T ∗M,BSg) its
cotangent bundle equipped with the Berger-type deformed Sasaki metric. A
covector field ω on M is called harmonic covector field if the corresponding
map ω : (M2m, J, g) → (T ∗M,BSg) is a critical point for the energy functional
E, only considering variations among maps defined by covector fields.

In the following theorem, we determine the first variation of the energy
restricted to the space ℑ0

1(M).

Theorem 4.7. Let (M2m, J, g) be a compact oriented standard Kähler mani-
fold, (T ∗M,BSg) its cotangent bundle equipped with the Berger-type deformed
Sasaki metric, ω a covector field on M and E : ℑ0

1(M) → [0,+∞) the energy
functional restricted to the space of all covector fields. Then

d

dt
E(ωt)

∣∣
t=0

=

∫
M

g−1
(
∆̄ω + δ2g−1(∆̄ω, ωJ)ωJ

− 2δ2Trg
[
g−1(∇∗ω, ωJ)∇∗(ωJ)

]
, ϑ

)
vg(15)
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for any smooth 1-parameter variation ϕ : M × (−ϵ, ϵ) → T ∗M of ω through
covector fields, i.e., ϕ(x, t) = ωt(x) ∈ T ∗M for any x ∈ M and any |t| <
ϵ, (ϵ > 0). or equivalently ωt ∈ ℑ0

1(M) for any |t| < ϵ. Also, ϑ ∈ ℑ0
1(M) is the

covector field on M given by

ϑ(x) = lim
t→0

1

t
(ωt(x)− ω(x)) =

d

dt
ϕx(t)

∣∣
t=0

, x ∈M,

where ϕx(t) = ωt(x), (x, t) ∈M× (−ϵ, ϵ). (For tangent bundle version, see [7].)

Proof. Let ϕ :M×(−ϵ, ϵ) → T ∗M be a smooth 1-parameter variation of ω, i.e.
ϕ(x, t) = ωt(x) ∈ T ∗

xM for any (x, t) ∈M×(−ϵ, ϵ) and ϕ(x, 0) = ω0(x) = ω(x).
From (6), we have

E(ωt) =

∫
M

e(ωt)v
g,

and from (8), we have

d

dt
E(ωt)

∣∣∣
t=0

= −
∫
M

BSg(V, τ(ω))vg,(16)

where V is the infinitesimal variation induced by ϕ, i.e.,

V(x) = d(x,0)ϕ(0,
d

dt
)
∣∣
t=0

= dϕx(
d

dt
)
∣∣
t=0

=
d

dt
ωt(x)

∣∣
t=0

∈ Tω(x)T
∗M.

Let us set

ϕi(x, t) = xi(ϕ(x, t)) = xi(x),

ϕi+m(x, t) = xī(ϕ(x, t)) = (ωt)i(x), 1 ≤ i ≤ m.

Then, on one hand, we have

dϕi
dt

(x, 0) = 0, 1 ≤ i ≤ m.

On the other hand if ϑ = ϑidx
i then

dϕi+m

dt
(x, 0) = lim

t→0

1

t
(ϕi+m(x, t)− ϕi+m(x, 0))

= lim
t→0

1

t
((ωt)i(x)− ωi(x))

=ϑi(x), 1 ≤ i ≤ m,

hence

V(x) = dϕi
dt

(x, 0)∂i|(x,ω(x)) +
dϕi+m

dt
(x, 0)∂ī|(x,ω(x))

=ϑi(x)
V(dxi)|(x,ω(x))

= Vϑ(x,ω(x)).

We may conclude that

V = Vϑ ◦ ω.(17)
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Finally, by taking into account (14), (16) and (17), we find

d

dt
E(ωt)

∣∣∣
t=0

=−
∫
M

BSg(Vϑ, τ(ω))vg

=

∫
M

g−1
(
∆̄ω + δ2g−1(∆̄ω, ωJ)ωJ

− 2δ2Trg
[
g−1(∇∗ω, ωJ)∇∗(ωJ)

]
, ϑ

)
vg. □

Remark 4.8. Theorem 4.7 holds if (M2m, J, g) is a non-compact standard
Kähler manifold. Indeed, if M is non-compact, we can take an open subset
D in M whose closure is compact, and take an arbitrary ϑ whose support is
contained in D. Theorem 4.7 holds under the form:

d

dt
E(ωt)

∣∣
t=0

=

∫
D

g−1
(
∆̄ω + δ2g−1(∆̄ω, ωJ)ωJ

− 2δ2Trg
[
g−1(∇∗ω, ωJ)∇∗(ωJ)

]
, ϑ

)
vg.

Corollary 4.9. Let (M2m, J, g) be a standard Kähler manifold, (T ∗M,BSg)
its cotangent bundle equipped with the Berger-type deformed Sasaki metric. A
covector field ω on M is a harmonic covector field if and only if

∆̄ω = 2δ2Trg
[
g−1(∇∗ω, ωJ)∇∗(ωJ)

]
− δ2g−1(∆̄ω, ωJ)ωJ.

Note that if ω is parallel, then ω is a harmonic covector field. Conversely
we have the following theorem.

Theorem 4.10. Let (M2m, J, g) be a compact oriented standard Kähler man-
ifold, (T ∗M,BSg) its cotangent bundle equipped with the Berger-type deformed
Sasaki metric and ω a covector field on M . Then ω is a harmonic covector
field if and only if ω is parallel.

Proof. We assume that the covector field ω is a harmonic vector field, i.e.,
critical point of the energy functional E restricted to the space of all covector
fields of (Mm, g). We consider the smooth 1-parameter variation ωt = (1+ t)ω
of ω for any t ∈ (−ϵ, ϵ), ϵ > 0. From (15) we have

0 =
d

dt
E(ωt)

∣∣∣
t=0

=

∫
M

g−1(∆̄ω, ω)vg + δ2
∫
M

g−1(∆̄ω, ωJ)g−1(ωJ, ω)vg

− 2δ2
∫
M

Trg
[
g−1(∇∗ω, ωJ)g

−1(∇∗(ωJ), ω)
]
vg.

Using (11), (4) and (5), we find

0 =

∫
M

|∇ω|2vg − 1

2

∫
M

∆(|ω|2)vg + 2δ2
∫
M

Trg
[
g−1(∇∗ω, ωJ)

2
]
vg.
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Applying the divergence theorem, we get∫
M

∆(|ω|2)vg = 0,

hence ∫
M

|∇ω|2vg + 2δ2
∫
M

Trg
[
g−1(∇∗ω, ωJ)

2
]
vg = 0.

Since the function |∇ω|2g−1 and Trg
[
g−1(∇∗ω, ωJ)

2
]
are positive, we easily

conclude that ∇ω = 0. Conversely, we suppose that the covector field ω is
parallel. By virtue of Corollary 4.9, ω is a harmonic covector field. □

Example 4.11. Let
(
R2, g, J

)
be a standard Kähler manifold such that

g = e2xdx2 + e2ydy2, J =

(
0 ey−x

−ex−y 0

)
.

Relatively to the orthonormal frame

e1 = e−x∂x, e2 = e−y∂y.

we have

Je1 = −e2, Je2 = e1,

and

∇eiej = 0 for all i, j = 1, 2.

We consider the vector field ω = f(x)dx, where f is a smooth real function
depending on the variable x. Using (12) and direct calculations, we find

(18)
∆̄ω = e−2x(−f ′′ + 3f ′ − 2f)dx,

g−1(∆̄ω, ωJ) =Trg
[
g−1(∇∗ω, ωJ)∇∗(ωJ)

]
= 0.

From Corollary 4.9, and (18), we deduce that ω = f(x)dx is a harmonic covector
field if and only if ∆̄ω = 0 or equivalently, the function f satisfies the following
homogeneous two order differential equation

−f ′′ + 3f ′ − 2f = 0.(19)

The general solution of the differential equation (19) is

f = c1e
x + c2e

2x,

where c1 and c2 are real constants.

Example 4.12. Let R2 be endowed with the structure standard Kähler (J, g)
in polar coordinate defined by

g = dr2 + r2dθ2 , J =

(
0 r
− 1

r 0

)
.

The non-null Christoffel symbols of the Riemannian connection are

Γ2
12 = Γ2

21 = −1

r
, Γ1

22 = −r.
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We have

∇∂r
dr = 0, ∇∂r

dθ = −1

r
dθ, ∇∂θ

dr = rdθ, ∇∂θ
dθ = −1

r
dr.

The covector field ω = cos θdr − r sin θdθ is harmonic because ω is parallel,
indeed,

∇∂r
ω = cos θ∇∂r

dr − sin θdθ − r sin θ∇∂r
dθ = 0,

∇∂θ
ω = − sin θdr + cos θ∇∂θ

dr − r cos θdθ − r sin θ∇∂θ
dθ = 0,

i.e., ∇ω = 0.

Theorem 4.13. Let (M2m, J, g) be a standard Kähler manifold, (T ∗M,BSg)
its cotangent bundle equipped with the Berger-type deformed Sasaki metric and
ω a covector field on M . Then ω is an isometric immersion if and only if ω is
parallel.

Proof. Let Y,Z be vector fields and ωx = p. From (10), we have

BSg(dω(Y ), dω(Z)) =BSg(HY + V(∇Y ω),
HZ + V(∇Zω))

=BSg(HY,HZ) + BSg(V(∇Y ω),
V(∇Zω))

=g(Y, Z) + g−1(∇Y ω,∇Zω)

+ δ2g−1(∇Y ω, Jω)g
−1(∇Zω, Jω),

from which it follows that

BSg(dω(Y ), dω(Z)) = g(Y, Z).

Therefore, ω is an isometric immersion if and only if

g−1(∇Y ω,∇Zω) + δ2g−1(∇Y ω, Jω)g(∇Zω, Jω) = 0,

which is equivalent to ∇ω = 0. □

As a direct consequence of Theorem 4.6 and Theorem 4.13, we get the fol-
lowing.

Theorem 4.14. Let (M2m, J, g) be a standard Kähler manifold, T ∗M its
cotangent bundle equipped with the Berger-type deformed Sasaki metric BSg
and ω a covector field on M . If ω is an isometric immersion, then ω is totally
geodesic.

Corollary 4.15. Let (M2m, J, g) be a standard Kähler manifold, T ∗M its
cotangent bundle equipped with the Berger-type deformed Sasaki metric BSg and
ω a covector field on M . If ω is isometric immersion, then ω is a harmonic
map (a harmonic covector field).
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4.2. Harmonicity of covector fields along smooth maps

Lemma 4.16 ([21]). Let ϕ : (Mm, g) → (Nn, h) be a smooth map between
Riemannian manifolds and

σ :M −→ T ∗N

x 7−→ (ξ ◦ ϕ)(x) = (ϕ(x), ξϕ(x))

a smooth map, such that ξ is a covector field on N . Then

dσ(X) = H(dϕ(X)) + V(∇ϕ
Xσ)(20)

for all X ∈ ℑ1
0(M), where ∇ϕ is the pull-back connection.

Theorem 4.17. Let (Mm, g) be a Riemannian manifold, (N2n, J, h) be a stan-
dard Kähler manifold and let (T ∗N,BSh) be the cotangent bundle of N equipped
with the Berger-type deformed Sasaki metric. Let ϕ :M → N be a smooth map
and

σ :M −→ T ∗N

x 7−→ (ξ ◦ ϕ)(x) = (ϕ(x), ξϕ(x))

a smooth map, such that ξ is a covector field on N . The tension field of σ is
given by

τ(σ) =H
(
τ(ϕ) + Trg

(
RN (σ̃, ∇̃ϕσ)dϕ(∗) + δ2h−1(∇ϕσ, σJ)RN (Jσ̃, σ̃)dϕ(∗)

))
+ V

(
Trg

(
(∇ϕ)2σ + 2δ2h−1(∇ϕσ, σJ)(∇ϕσ)J

− 2δ4

λ
h−1(∇ϕσ, σJ)h−1(∇ϕσ, σ)σJ

))
,

where λ = 1 + δ2|σ|2 and (∇ϕ)2σ = ∇ϕ∇ϕσ −∇ϕ
∇σ.

Proof. Let {ei}i=1,m be a local orthonormal frame on M . Using (20), we have

τ(σ)

=

m∑
i=1

{
∇σ

eidσ(ei)− dσ(∇eiei)
}

=

m∑
i=1

{
BS∇dσ(ei)dσ(ei)−

H(dϕ(∇eiei))− V(∇ϕ
∇ei

ei
σ)
}

=

m∑
i=1

{
BS∇(H(dϕ(ei))+V(∇ϕ

ei
σ))(

H(dϕ(ei)) +
V(∇ϕ

eiσ))

− H(dϕ(∇eiei))− V(∇ϕ
∇ei

ei
σ)
}

=

m∑
i=1

{
BS∇H(dϕ(ei))

H(dϕ(ei)) +
BS∇H(dϕ(ei))

V(∇ϕ
eiσ) +

BS∇V(∇ϕ
ei

σ)
H(dϕ(ei))
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+ BS∇V(∇ϕ
ei

σ)
V(∇ϕ

eiσ)−
H(dϕ(∇eiei))− V(∇ϕ

∇ei
ei
σ)
}
.

From Theorem 3.1, we obtain

τ(σ) =

m∑
i=1

(
H(∇N

dϕ(ei)
dϕ(ei)) +

1

2
V(σRN (dϕ(ei), dϕ(ei)))

+ H(RN (σ̃, ∇̃ϕ
eiσ)dϕ(ei)) + δ2h−1(∇ϕ

eiσ, σJ)
H(RN (Jσ̃, σ̃)dϕ(ei))

+ 2δ2h−1(∇ϕ
eiσ, σJ)

V((∇ϕ
eiσ)J)−

H(dϕ(∇eiei))− V(∇ϕ
∇ei

ei
σ)

− 2δ4

λ
h−1(∇ϕ

eiσ, σJ)h
−1(∇ϕ

eiσ, σ)
V(σJ) + V(∇N

dϕ(ei)
∇ϕ

eiσ)
)

=

m∑
i=1

(
H(∇ϕ

eidϕ(ei))−
H(dϕ(∇eiei)) +

H(RN (σ̃, ∇̃ϕ
eiσ)dϕ(ei))

+ δ2h−1(∇ϕ
eiσ, σJ)

H(RN (Jσ̃, σ̃)dϕ(ei)) +
V(∇ϕ

ei∇
ϕ
eiσ)

− V(∇ϕ
∇ei

ei
σ) + 2δ2h−1(∇ϕ

eiσ, σJ)
V((∇ϕ

eiσ)J)

− 2δ4

λ
h−1(∇ϕ

eiσ, σJ)h
−1(∇ϕ

eiσ, σ)
V(σJ)

)
=H

(
Trg

(
RN (σ̃, ∇̃ϕσ)dϕ(∗) + δ2h−1(∇ϕσ, σJ)RN (Jσ̃, σ̃)dϕ(∗)

)
+ τ(ϕ)

)
+ V

(
Trg

(
(∇ϕ)2σ + 2δ2h−1(∇ϕσ, σJ)(∇ϕσ)J

− 2δ4

λ
h−1(∇ϕσ, σJ)h−1(∇ϕσ, σ)σJ

))
.

□

From Theorem 4.17 we obtain

Theorem 4.18. Let (Mm, g) be a Riemannian manifold, (N2n, J, h) be a stan-
dard Kähler manifold and let (T ∗N,BSh) be the cotangent bundle of N equipped
with the Berger-type deformed Sasaki metric. Let ϕ :M → N be a smooth map
and

σ :M −→ T ∗N

x 7−→ (ξ ◦ ϕ)(x) = (ϕ(x), ξϕ(x))

a smooth map, such that ξ is a covector field on N . Then σ is harmonic if and
only if the following conditions are verified:

τ(ϕ) = −Trg
(
RN (σ̃, ∇̃ϕσ)dϕ(∗) + δ2h−1(∇ϕσ, σJ)RN (Jσ̃, σ̃)dϕ(∗)

)
,

and

Trg
(
(∇ϕ)2σ+2δ2h−1(∇ϕσ, σJ)(∇ϕσ)J−2δ4

λ
h−1(∇ϕσ, σJ)h−1(∇ϕσ, σ)σJ

)
= 0.
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4.3. Harmonicity of the composition of canonical projection on the
cotangent bundle with smooth maps

Lemma 4.19. Let (M2m, J, g) be a standard Kähler manifold and T ∗M its
cotangent bundle equipped with the Berger-type deformed Sasaki metric BSg.
The canonical projection

π : (T ∗M,BSg) −→ (M, g)

(x, p) 7−→ x

is harmonic, i.e., τ(π) = 0.

Proof. Let {ei}i=1,2m and {ωi}i=1,2m be a local orthonormal frame, coframe

on M , respectively such that ω2m =
pJ

|pJ |
=
pJ

|p|
. Then

(21)
{
Fi = eHi , F2m+j =

Vωj , F4m =
1√
λ

Vω2m
}
i=1,2m,j=1,2m−1

is a local frame on T ∗M with respect to the Berger-type deformed Sasaki
metric.

τ(π) =TrBSg(∇dπ)

=

2m∑
i=1

(
∇dπ(Hei)dπ(

Hei)− dπ(BS∇Hei
Hei)

)
+

2m−1∑
j=1

(
∇dπ(Vωj)dπ(

Vωj)− dπ(BS∇Vωj
Vωj)

)
+∇dπ( 1√

λ
Vω2m)dπ(

1√
λ

Vω2m)− dπ(BS∇( 1√
λ

Vω2m)(
1√
λ

Vω2m)).

Using dπ(Vωj) = 0 and dπ(Hei) = ei ◦ π, we have

τ(π) =

2m∑
i=1

(
(∇ei◦πei ◦ π)− dπ(BS∇Hei

Hei)
)
−

2m−1∑
j=1

dπ(BS∇Vωj
Vωj)

− dπ
( 1√

λ
Vω2m(

1√
λ
)Vω2m +

1

λ
BS∇Vω2m

Vω2m
)
.

From Theorem 3.1, we obtain

τ(π) =

2m∑
i=1

(
(∇eiei) ◦ π − dπ(∇eiei)

H
)

=

2m∑
i=1

(
(∇eiei) ◦ π − (∇eiei) ◦ π

)
= 0.

□

Theorem 4.20. Let (M2m, J, g) be a standard Kähler manifold, (Nn, h) be a
Riemannian manifold and let (T ∗M,BSg) the cotangent bundle of M equipped
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with the Berger-type deformed Sasaki metric. Let ϕ : (M, g) −→ (N,h) be a
smooth map. The tension field of the map

ψ : (T ∗M,BSg) −→ (N,h)

(x, p) 7−→ ϕ(x)

is given by

τ(ψ) = τ(ϕ) ◦ π.(22)

Proof. Let {Fa}a=1,4m be a local orthonormal frame on T ∗M defined by (21)
as above. Since ψ is written in the form ψ = ϕ ◦ π, we have

τ(ψ) = τ(ϕ ◦ π)
= dϕ(τ(π)) + TrBSg∇dϕ(dπ, dπ)

=

2m∑
i=1

(
∇N

dϕ(dπ(Hei))
dϕ(dπ(Hei))− dϕ(∇dπ(Hei)dπ(

Hei))
)

+

2m−1∑
j=1

(
∇N

dϕ(dπ(Vωj))dϕ(dπ(
Vωj))− dϕ(∇dπ(Vωj)dπ(

Vωj))
)

+∇N
dϕ(dπ( 1√

λ
Vωm))dϕ(dπ(

1√
λ

Vωm))− dϕ(∇dπ( 1√
λ

Vωm)dπ(
1√
λ

Vωm))

=

m∑
i=1

(
(∇N

dϕ(ei◦π)dϕ(ei ◦ π))− dϕ(∇ei◦πei ◦ π)
)

=

m∑
i=1

(
∇N

dϕ(ei)
dϕ(ei) ◦ π − dϕ((∇eiei) ◦ π)

)
=

m∑
i=1

(
∇N

dϕ(ei)
dϕ(ei)− dϕ(∇eiei)

)
◦ π

=τ(ϕ) ◦ π.
□

From Theorem 4.20, we obtain

Theorem 4.21. Let (M2m, J, g) be a standard Kähler manifold, (Nn, h) be a
Riemannian manifold and let (T ∗M,BSg) the cotangent bundle of M equipped
with the Berger-type deformed Sasaki metric. Let ϕ : (M, g) −→ (N,h) a
smooth map. The map

ψ : (T ∗M,BSg) −→ (N,h)

(x, p) 7−→ ϕ(x)

is harmonic if and only if ϕ is harmonic.
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[1] F. Ağca, g-natural metrics on the cotangent bundle, Int. Electron. J. Geom. 6 (2013),

no. 1, 129–146.
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