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SQUARE ELEMENTS IN GALOIS RINGS AND MDS

SELF-DUAL CODES†

SUNGHYU HAN

Abstract. Let GR(2m, r) be a Galois ring with even characteristic. We
prove that if r is even and n ≡ 0 (mod 4), then −(n−1) is a square element

in GR(2m, r) for all m ≥ 1. Using this fact we also prove that if (n− 1) |
(2r−1), 4 | n, and r is even, then there exists an MDS(Maximum Distance
Separable) self-dual code over GR(2m, r) with parameters [n, n/2, n/2+1].
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1. Introduction

Let R = GR(pm, r) be a Galois ring. We want to study the existence of
MDS(Maximum Distance Separable) self-dual codes over R. If m = 1, then
R = GR(p, r) is the finite field Fpr . There are many papers about MDS self-
dual codes over finite fields. If p = 2 then we have the following result.

Theorem 1.1. [6, Theorem 3] For R = GR(2, r) = F2r , there exist an MDS
self-dual code C = [2k, k, k + 1] over R for all k = 1, · · · , 2r−1.

The study for F2r is completed if MDS conjecture over finite fields [11, Section
7.4] is true. For odd prime p, there are numerous papers for MDS self-dual codes
over Fpr (see [4] as an example) and the research has not been completed.

MDS self-dual codes over Galois rings are studied [8]. If p is odd, then the
existence of MDS self-dual codes over GR(pm, r) is equivalent to those over
Fpr [8, Theorem 3.8, Theorem 3.9]. Specifically, if we have an MDS self-dual
code over GR(pm, r), then we can make an MDS self-dual code over Fpr using
the canonical projection map. Conversely, if we have an MDS self-dual code
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Table 1. Positive integers n such that (n− 1) | (2r − 1), 4 | n,
n ≥ 8, and 3 ≤ r ≤ 10

r n r n
3 8 7 128
4 16 8 16, 52, 256
5 32 9 8, 512
6 8, 64 10 12, 32, 1024

over Fpr , then we can make an MDS self-dual code over GR(pm, r) using lifting
process.

If p is even, then the projection map is still working but the lifting process
can not be applied. Therefore the study of MDS self-dual codes over Galois
rings with even characteristic is difficult. The focus of this paper is about MDS
self-dual codes over GR(2m, r). If m = 1, then GR(2m, r) = Fr

2. Therefore the
research is done by Theorem 1.1. We assume that m ≥ 2. There are some results
for this case.

Theorem 1.2. [8, Theorem 4.5, Theorem 4.6] For Galois ring R = GR(2m, r),
we have the following:

(1) If m ≥ 2, then there is no MDS self-dual code over R for length n ≡ 2
(mod 4).

(2) If m ≥ 2 and r is odd, then there is no [4, 2, 3] MDS self-dual code over
R.

(3) If m ≥ 2 and r is even, then there exist a [4, 2, 3] MDS self-dual code
over R.

From the above theorem, we will consider n ≥ 8 and 4 | n for code length n.
The following theorem gives construction method for some MDS self-dual codes.

Theorem 1.3. [9, Theorem 3.4] Let R = GR(2m, r), and n be a positive integer
such that (n− 1) | (2r − 1) and 2m | n. Then there exists an MDS self-dual code
over R with parameters [n, n/2, n/2 + 1].

The above theorem is developed to the following theorem.

Theorem 1.4. [10, Theorem 3.2] Let R = GR(2m, r), and n be a positive integer
such that (n − 1) | (2r − 1) and 8 | n. Then there exists an MDS self-dual code
over R with parameters [n, n/2, n/2 + 1].

In Table 1, we give positive integers n such that (n−1) | (2r−1), 4 | n, n ≥ 8,
and 3 ≤ r ≤ 10. In Table 1, for the case n = 8, 16, 32, 64, 128, 256, 512, 1024,
since 8 | n, by Theorem 1.4, we know that there exists an MDS self-dual code
over R = GR(2m, r) with parameters [n, n/2, n/2 + 1].

In Table 1, for the two cases n = 52 and n = 12, we have 8 ∤ 52 and 8 ∤ 12.
By Theorem 1.3, there exists an MDS self-dual code of length 52 and length 12
over R = GR(2m, 8) and R = GR(2m, 10), respectively, for m = 1, 2. But we
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can not apply Theorem 1.4 to this case, therefore we don’t know the existence of
an MDS self-dual code for m ≥ 3. The main point of the proof of Theorem 1.4
is that −(n− 1) should be a square element of R = GR(2m, r). If 8 | n, then we
have the following result.
Lemma 1.5. [10, Lemma 3.1] Let n be a positive integer such that n ≡ 0
(mod 8). Let f(x) = x2+(n−1). Then there is an integer solution for f(x) ≡ 0
(mod 2m) for all m ≥ 1.

The following lemma shows that −(n − 1) is not a square element in Z2m ,
(m ≥ 3) if 8 ∤ n.

Lemma 1.6. [10, Lemma 3.3] Let n be an even positive integer such that n ̸≡ 0
(mod 8). Let f(x) = x2+(n−1). Then there is no integer solution for f(x) ≡ 0
(mod 2m) for m ≥ 3.

Although −(n− 1) is not a square element in Z2m , (m ≥ 3) if 8 ∤ n, it is still
possible that −(n− 1) is a square element in R = GR(2m, r). In this paper, we
prove that if r is even and n ≡ 0 (mod 4), then −(n− 1) is a square element in
GR(2m, r) for all m ≥ 1. Using this fact we also prove that if (n− 1) | (2r − 1),
4 | n, and r is even, then there exists an MDS self-dual code over R with
parameters [n, n/2, n/2 + 1].

This paper is organized as follows. In Section 2, we provide basic facts for
Galois rings, linear codes, MDS codes, self-dual codes, and generalized Reed-
Solomon codes. In Section 3, we describe our main results. In Section 4, we
summarize this paper and give some future works. All the computations are
made using Magma software [1].

2. Preliminaries

2.1. Galois rings. In this subsection, we present some well-known facts about
Galois rings (see [17] as an example). Let p be a fixed prime and m be a positive
integer. First, we consider the following canonical projection

µ : Zpm → Zp

which is defined by

µ(c) = c (mod p).

The map µ can be extended naturally to the following map

µ : Zpm [x] → Zp[x]

which is defined by

µ(a0 + a1x+ · · ·+ anx
n) = µ(a0) + µ(a1)x+ · · ·+ µ(an)x

n.

This extended µ is a ring homomorphism with kernel (p).
Let f(x) be a polynomial in Zpm [x]. Then, f(x) is called basic irreducible if

µ(f(x)) is irreducible. A Galois ring is constructed as

GR(pm, r) = Zpm [x]/(f(x)),
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where f(x) is a monic basic irreducible polynomial in Zpm [x] of degree r. The
elements of GR(pm, r) are residue classes of the form

a0 + a1x+ · · ·+ ar−1x
r−1 + (f(x)),

where ai ∈ Zpm , (0 ≤ i ≤ r − 1).
A polynomial h(x) in Zpm [x] is called a basic primitive polynomial if µ(h(x))

is a primitive polynomial. It is a well-known fact that there is a monic ba-
sic primitive polynomial h(x) of degree r over Zpm and h(x)|(xpr−1 − 1) in
Zpm [x]. Let h(x) be a monic basic primitive polynomial in Zpm [x] of degree r

and h(x)|(xpr−1 − 1). Consider the following element

ξ = x+ (h(x)) ∈ GR(pm, r) = Zpm [x]/(h(x)).

The order of ξ is pr − 1. Teichmüller representatives are defined as follows.

T = {0, 1, ξ, ξ2, . . . , ξp
r−2}.

Every element t ∈ GR(pm, r) can be uniquely represented by the form

t = t0 + pt1 + p2t2 + · · ·+ pm−1tm−1,

where ti ∈ T, (0 ≤ i ≤ m− 1). Moreover, t is a unit if and only if t0 ̸= 0, and t
is a zero divisor or 0 if and only if t0 = 0.

2.2. Linear codes over GR(pm, r). A linear code C of length n overGR(pm, r)
is a submodule of GR(pm, r)n, and the elements in C are called codewords.
The distance d(u,v) between two elements u,v ∈ GR(pm, r)n is the number
of coordinates in which u,v differ. The minimum distance of a code C is the
smallest distance between distinct codewords. The weight of a codeword c =
(c1, c2, · · · , cn) in C is the number of nonzero cj . The minimum weight of C is
the smallest nonzero weight of any codeword in C. If C is a linear code, then
the minimum distance and the minimum weight are the same.

A generator matrix for a linear code C over GR(pm, r) is permutation equiv-
alent to the following one in the standard form [14, 15]:

G =


Ik0

A0,1 A0,2 A0,3 · · · A0,m−1 A0,m

0 pIk1 pA1,2 pA1,3 · · · pA1,m−1 pA1,m

0 0 p2Ik2 p2A2,3 · · · p2A2,m−1 p2A2,m

...
...

...
...

...
...

0 0 0 0 · · · pm−1Ikm−1
pm−1Am−1,m

 ,

where the columns are grouped into square blocks of sizes k0, k1, . . . , km−1. The
rank of C, denoted by rank(C), is defined to be the number of nonzero rows of

its generator matrix G in a standard form. Therefore rank(C) =
∑m−1

i=0 ki. We
call k0 in G the free rank of a code C. If rank(C) = k0, then C is called a free
code. We say C is an [n, k, d] linear code, if the code length is n, the rank of C
is k, and the minimum weight of C is d. In this paper, we assume that all codes
are linear unless we state otherwise.
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2.3. MDS codes. It is known (see [13] as an example) that for a (linear or
nonlinear) code C of length n over any finite alphabet A,

d ≤ n− log|A|(|C|) + 1.

Codes meeting this bound are called MDS codes. Further, if C is a linear code
over a ring, then

d ≤ n− rank(C) + 1.

Codes meeting this bound are called maximum distance with respect to rank
(MDR) codes [3, 15]. The following lemma states the necessary and sufficient
condition for MDS codes over Galois rings (see [7] as an example).

Lemma 2.1. Let C be a linear code over GR(pm, r). Then, C is MDS if and
only if C is MDR and free.

2.4. Self-dual codes. We define the usual inner product: for x,y ∈ GR(pm, r)n,

x · y = x1y1 + · · ·+ xnyn.

For a code C of length n over GR(pm, r), let

C⊥ = {x ∈ GR(pm, r)n
∣∣x · c = 0, ∀ c ∈ C}

be the dual code of C. If C ⊆ C⊥, we say that C is self-orthogonal, and if
C = C⊥, then C is self-dual. If a self-dual code C is MDS then C is called an
MDS self-dual code.

2.5. Generalized Reed-Solomon codes over GR(pm, r). In this subsection,
we describe generalized Reed-Solomon codes over R = GR(pm, r) [15, 16]. We
start with the following definition (see [15, Definition 2.2], [16, Definition 5] as
examples).

Definition 2.2. Let R = GR(pm, r). A subset S of R is subtractive if s − t is
unit for all s, t ∈ S with s ̸= t.

We have the following result for subtractive subsets of Galois rings.
Lemma 2.3. [10, Lemma 2.4] Let R = GR(pm, r) and T = {0, 1, ξ, ξ2, . . . , ξpr−2}
be the set of the Teichmüller representatives of R. Then we have the following.

(1) If A ⊆ T , then A is subtractive.
(2) For B ⊆ R, if B is subtractive then |B| ≤ |T |.

Now we define the generalized Reed-Solomon codes over Galois rings (see [15,
Example 3.7], [16, Definition 22] as examples).

Definition 2.4. Let R = GR(pm, r) and n, k be two positive integers such that
1 ≤ k ≤ n. Let Pk be the set of polynomials over R of degree less than k,
including the zero polynomial in R[x]. Let {α1, α2, . . . , αn} be a subtractive
subset of R, α = (α1, α2, . . . , αn) ∈ Rn, and v = (v1, v2, . . . , vn) ∈ Rn, where vi
is unit for 1 ≤ i ≤ n. Then the generalized Reed-Solomon code, GRSk(α, v) is
defined by

GRSk(α, v) = {(v1f(α1), v2f(α2), . . . , vnf(αn)) | f ∈ Pk}.
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The following theorem is used in the main section. The proof can be found
in [16, Proposition 23, Corollary 24, Proposition 25].

Theorem 2.5. We have the followings for the GRSk(α, v) defined above.

(1) GRSk(α, v) is an [n, k, d] MDS code with d = n− k + 1.
(2) A generator matrix of GRSk(α, v) is given by

G =


v1 v2 · · · vn
v1α1 v2α2 · · · vnαn

v1α
2
1 v2α

2
2 · · · vnα

2
n

...
...

...

v1α
k−1
1 v2α

k−1
2 · · · vnα

k−1
n

 .

3. Main

We start with the following two definitions.

Definition 3.1. Let t be a non-zero element of GR(pm, r) with the representa-
tion

t = t0 + pt1 + p2t2 + · · ·+ pm−1tm−1,

where ti ∈ T, (0 ≤ i ≤ m− 1) and T = {0, 1, ξ, ξ2, . . . , ξpr−2} is the Teichmüller
representatives. We define the p-adic valuation of t, vp(t), by the first i such
that ti ̸= 0. In other words,

vp(t) = i, (t0 = t1 = · · · = ti−1 = 0, ti ̸= 0).

Definition 3.2. Let t be an element of GR(pm, r). We define the p-adic absolute
value of t by

|t|p = p−vp(t)

if t ̸= 0, and we set |0|p = 0.

The two definitions on GR(pm, r) above are similar to the two definitions, p-
adic valuation on Q and p-adic absolute value on Q [5, Definition 2.1.2, Definition
2.1.4].

Example 3.3. Consider the Galois ring GR(210, 8).
Then GR(210, 8) = Z210 [x]/(h(x)), h(x) = x8 + 4x7 + 2x6 + 6x5 + 3x4 + 5x3 +
3x2 +2x+1. h(x) = x8 +x4 +x3 +x2 +1 is a primitive polynomial [12, p. 553]
and h(x) is a Hensel lift of h(x). Let ξ = x+ (h(x)) and p = 2. If t = 1 + ξ · p,
then vp(t) = 0 and |t|p = p−0 = 1. If t = ξ3 · p2 + ξ2 · p3, then vp(t) = 2 and
|t|p = p−2 = 1

4 .

We are ready to prove our main results.

Theorem 3.4. Let n be an integer with n ≡ 0 (mod 4). If r is even then
−(n− 1) is a square element in GR(2m, r) for all m ≥ 1.
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Proof. Our proof is similar to the first proof of Theorem 4.1 in [2]. For a fixed
m, let R = GR(2m, r). Then R = Z2m [x]/(h(x)), where h(x) is a basic primitive
polynomial of degree r. Let ξ = x+ (h(x)). Then |ξ| = 2r − 1. Since r is even,

2r − 1 is divisible by 3. Let α = ξ
2r−1

3 . Then α3 = 1 and 1 + α + α2 = 0 in R.
Let p = 2 and a = 1 + 2α in R. Let f(x) = x2 + (n − 1). Then f ′(x) = 2x. If
n ≡ 0 (mod 8), then there is an integer solution for f(x) ≡ 0 (mod 2m) for all
m ≥ 1 by Lemma 1.5. Therefore we assume that n ̸≡ 0 (mod 8). If m = 1 or
m = 2, then −(n − 1) = 1 in R and −(n − 1) is a square element in R. So, we
assume that m ≥ 3.

Note that f(a) = a2+(n−1) = (1+2α)2+(n−1) = 4(1+α+α2)−3+(n−1) =
n − 4. Therefore f(a) ≡ 0 (mod 8) and |f(a)|p ≤ 2−3. f ′(a) = 2(1 + 2α) =
2 + α · 22 and |f ′(a)|2p = 2−2. If |f(a)|p = 0, then f(a) = 0 and −(n − 1) is a

square element in R. So, we assume that |f(a)|p ̸= 0. Let t = |f(a)|p/|f ′(a)|2p.
Then t = 2−t1 for some t1 ≥ 1.

We define a sequence ak in R. Let a1 = a and

ak+1 = ak − f(ak)

f ′(ak)
, (k ≥ 1).

We claim the followings:

(i) ak is well-defined and a unit in R.
(ii) |f ′(ak)|p = |f ′(a1)|p = 2−1.

(iii) |f(ak)|p ≤ |f ′(a1)|2p · t2
k−1

= 2−2 · 2−t1·2k−1

.

We prove the claim by induction on k. If k = 1, then the claim is clearly true.
Assume that (i), (ii), and (iii) are true for k. To prove (i) for k + 1, note that
using (ii) and (iii) we have

|f(ak)|p/|f ′(ak)|p ≤ 2−2 · 2−t1·2k−1

2−1
= 2−1 · 2−t1·2k−1

.

This means that f(ak)
f ′(ak)

is well-defined and ak+1 is a unit in R. So, (i) is true for

k + 1. To prove (ii) for k + 1, note that

|f ′(ak+1)|p = |2ak+1|p = 2−1|ak+1|p.

Since ak+1 is a unit, |ak+1|p = 1 and |f ′(ak+1)|p = 2−1. So, (ii) is true for k+1.
To prove (iii) for k + 1, note that

f(ak+1) = (ak − f(ak)/f
′(ak))

2 + (n− 1)

= a2k − 2ak
f(ak)

f ′(ak)
+ (f(ak)/f

′(ak))
2 + (n− 1)

= a2k + (n− 1)− 2ak
f(ak)

2ak
+ (f(ak)/f

′(ak))
2

= f(ak)− f(ak) + (f(ak)/f
′(ak))

2

= (f(ak)/f
′(ak))

2.
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Therefore

|f(ak+1)|p = |f(ak)/f ′(ak)|2p =
|f(ak)|2p
|f ′(a1)|2p

≤
|f ′(a1)|4pt2k

|f ′(a1)|2p
= |f ′(a1)|2p · t2k.

This completes the induction. We choose the smallest positive integer k0 such
that 2 + t1 · 2k0−1 ≥ m. Then we have f(ak0) = 0 in R by (iii). This completes
the proof. □

For the sequence ak in the proof of Theorem 3.4, we claim that ak = bk(1+2α)
for some bk ∈ Z2m . We prove this by induction. Note that b1 = 1. Assume that
ak = bk(1 + 2α) for some bk ∈ Z2m . Then,

ak+1 = ak − f(ak)

f ′(ak)

= bk(1 + 2α)− (bk(1 + 2α))2 + (n− 1)

2bk(1 + 2α)

= bk(1 + 2α)− b2k(−3) + (n− 1)

2bk

(
− 1 + 2α

3

)
= bk(1 + 2α) +

−3b2k + (n− 1)

2 · 3 · bk
(1 + 2α)

=
(
bk +

−3b2k + (n− 1)

2

)
(3−1)(b−1

k )(1 + 2α)

Therefore

bk+1 = bk +
−3b2k + (n− 1)

2
(3−1)(b−1

k ) ∈ Z2m

and bk+1 ∈ Z2m . This completes the proof.
Using the sequence ak and bk, we give a calculation β such that β2 = −(n−1)

in GR(2m, r) for the two cases, n = 52, r = 8, m = 10 and n = 12, r = 10,
m = 10. For the first case, n = 52, r = 8, m = 10. Let R = GR(210, 8) =
Z210 [x]/(h(x)), where h(x) is the polynomial in Example 3.3. Let ξ = x+(h(x)).
|ξ| = 28−1 = 255. Let α = ξ255/3 = ξ85. Therefore α3 = 1 and (α−1)(α2+α+
1) = 0. Since α ̸= 1, we have α2+α+1 = 0, (1+2α)2 = 1+4α+4α2 = −3+4(1+
α+α2) = −3, (1 + 2α)−1 = (1+ 2α)/(−3), and f(a) = (1+ 2α)2 +51 = 3× 24.
Therefore |f(a)|p = 2−4 and |f(a)/f ′(a)2|p = 2−4/2−2 = 2−2. So, t1 = 2. We
choose the smallest positive integer k0 such that 2 + 2 · 2k0−1 ≥ 10. So, k0 = 3.
We have b1 = 1, and

b2 = b1 +
−3b21 + (n− 1)

2
(3−1)(b−1

1 )

= 1 +
−3 · 12 + (52− 1)

2
(3−1)(1−1)

= 1 +
48

2
(3−1)(1−1)

= 1 + 24(3−1)(1−1)
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= 1 + 24(683)(1) = 9,

and

b3 = b2 +
−3b22 + (n− 1)

2
(3−1)(b−1

2 )

= 9 +
−3 · 92 + (52− 1)

2
(3−1)(9−1)

= 9 +
−192

2
(3−1)(9−1)

= 9− 96(3−1)(9−1)

= 9− 96(683)(569) = 233.

Therefore a1 = 1 + 2α, a2 = 9(1 + 2α), a3 = 233(1 + 2α), and β = a3 is a
solution of f(x) = x2+(52−1) = 0 in GR(210, 8). Note that β is also a solution
of f(x) = x2 + (52− 1) = 0 in GR(2m, 8) for 1 ≤ m ≤ 9. More specifically, the
solutions are the following: β = 233 + 466α in GR(29, 8), β = 233 + 210α in
GR(28, 8), β = 105+ 82α in GR(27, 8), β = 41+ 18α in GR(26, 8), β = 9+ 18α
in GR(25, 8), β = 9 + 2α in GR(24, 8), β = 1 + 2α in GR(23, 8), β = 1 + 2α in
GR(22, 8), β = 1 in GR(21, 8).

For the second case, n = 12, r = 10, m = 10. Let R = GR(210, 10) =
Z210 [x]/(h(x)) and h(x) = x10 + 6x5 + 4x4 + 7x3 + 1. h(x) = x10 + x3 + 1
is a primitive polynomial [12, p. 553] and h(x) is a Hensel lift of h(x). Let
ξ = x + (h(x)). Then |ξ| = 210 − 1 = 1023. Let α = ξ1023/3 = ξ341. By similar
calculation to the first case, we have t1 = 1, k0 = 4, b1 = 1, b2 = 685, b3 = 197,
and b4 = 549. Therefore a1 = 1 + 2α, a2 = 685(1 + 2α), a3 = 197(1 + 2α),
a4 = 549(1 + 2α), and β = a4 is a solution of f(x) = x2 + (12 − 1) = 0 in
GR(210, 10). Like the first case, β is also a solution of f(x) = x2 + (12− 1) = 0
in GR(2m, 10) for 1 ≤ m ≤ 9. More specifically, the solutions are the following:
β = 37 + 74α in GR(29, 10), β = 37 + 74α in GR(28, 10), β = 37 + 74α in
GR(27, 10), β = 37+10α in GR(26, 10), β = 5+10α in GR(25, 10), β = 5+10α
in GR(24, 10), β = 5 + 2α in GR(23, 10), β = 1 + 2α in GR(22, 10), β = 1 in
GR(21, 10).

We state the main theorem of this paper in the following.

Theorem 3.5. Let R = GR(2m, r), and n be a positive integer such that (n−1) |
(2r − 1) and 4 | n. If r is even, then there exists an MDS self-dual code over R
with parameters [n, n/2, n/2 + 1].

Proof. By Theorem 3.4, there exists a unit β in R such that β2 = −(n− 1). Let

ξ ∈ R be a primitive (2r−1)th root of unity. Let α = ξ
2r−1
n−1 . Then α is a primitive

(n − 1)th root of unity. Let δ = (0, 1, α, α2, . . . , αn−2) and v = (β, 1, 1, . . . , 1).
Let C be the code GRSn

2
(δ, v). Then by Theorem 2.5, C is an [n, n

2 ,
n
2 −1] MDS
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Table 2. Integers n such that (n− 1) | (2r − 1), 2 | r, 4 | n,
8 ∤ n, n ≥ 8, (2 ≤ r ≤ 20)

r n
8 52
10 12
12 36, 92, 196, 316, 820
14 44
16 52, 772, 13108
18 20, 28, 172, 220, 1388, 1972, 12484
20 12, 76, 124, 156, 276, 452, 3076, 5116, 6356, 11276, 209716

code with the following generator matrix G:

G =


β 1 1 1 · · · 1
0 1 α α2 · · · αn−2

0 1 α2 (α2)2 · · · (αn−2)2

...
...

...
...

...
0 1 α

n
2 −1 (α2)

n
2 −1 · · · (αn−2)

n
2 −1

 .

We prove that C is self-dual by showing that the inner product of two rows
of G is zero. Let Gi be the i-th row of G. First, note that

G1 ·G1 = β2 + 12 + 12 + · · ·+ 12 = β2 + (n− 1) = 0.

For the other cases,

Gi ·Gj = 1 · 1 + αi−1αj−1 + (α2)i−1(α2)j−1 + · · ·+ (αn−2)i−1(αn−2)j−1

= 1 + αi+j−2 + (α2)i+j−2 + (α3)i+j−2 + · · ·+ (αn−2)i+j−2

= 1 + (αi+j−2) + (αi+j−2)2 + (αi+j−2)3 + · · ·+ (αi+j−2)n−2

=
1− (αi+j−2)n−1

1− αi+j−2
,

where 1 ≤ i+j−2 ≤ n−2. Since 1−(αi+j−2)n−1 = 1−(αn−1)i+j−2 = 1−1 = 0.
Therefore Gi ·Gj = 0 and C is MDS self-dual. □

In Table 2, we give integers n such that (n − 1) | (2r − 1), 2 | r, 4 | n, 8 ∤ n,
n ≥ 8, (2 ≤ r ≤ 20). Therefore, for the integers n in Table 2 we can make MDS
self-dual codes of code length n using Theorem 3.5.

The remaining problem is that r is odd. In other words, we have the following
question: Let (n − 1) | (2r − 1), 4 | n, n ≥ 8, 8 ∤ n, m ≥ 3, and r be an odd
positive integer. Does −(n− 1) be a square element in GR(2m, r)? We made a
calculation using Magma software and have the following result: There does not
exist n such that (n− 1) | (2r − 1), r is odd, 4 | n, n ≥ 8, 8 ∤ n for r ≤ 673. So,
we give the following conjecture.
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Table 3. Current state of the existence of MDS self-dual
codes of code length n over GR(2m, r), (m ≥ 2, 3 ≤ r ≤ 10)

r n : known existence n : unknown existence
3 8
4 4, 16 8, 12
5 32 4k, (2 ≤ k ≤ 7)
6 4, 8, 64 4k, (3 ≤ k ≤ 15)
7 128 4k, (2 ≤ k ≤ 31)
8 4, 16, 52, 256 8, 12, 4k, (5 ≤ k ≤ 12, 14 ≤ k ≤ 63)
9 8, 512 4k, (3 ≤ k ≤ 127)
10 4, 12, 32, 1024 8, 4k, (4 ≤ k ≤ 7, 9 ≤ k ≤ 255)

Conjecture : There does not exist a positive integer n such that (n−1) | (2r−1),
r is odd, 4 | n, n ≥ 8, 8 ∤ n.
If the conjecture is true, then the condition, “r is even”, can be removed in
Theorem 3.5.

In Table 3, we give the current state of the existence of MDS self-dual codes
of code length n over GR(2m, r), (n ≥ 8,m ≥ 2, 3 ≤ r ≤ 10). In Table 3, the
second column gives the code length n for which MDS self-dual codes exist, and
the third column gives the code length n for which we don’t know the existence
of such codes.

4. Summary

In this paper, we defined the p-adic valuation and p-adic absolute value in
Galois rings, which are similar concepts to those defined in rational numbers.
With these concepts we proved that if r is even and n ≡ 0 (mod 4), then −(n−1)
is a square element in GR(2m, r) for all m ≥ 1. Using this fact we also proved
that if (n− 1) | (2r − 1), 4 | n, and r is even, then there exists an MDS self-dual
code over GR(2m, r) with parameters [n, n/2, n/2+ 1]. Many aspects remain to
be studied in the future, including the conjecture presented in the main section.
The unknown cases in Table 3 are also possible research topics in the future.

Conflicts of interest : The author declare no conflict of interest.
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