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ON THE OPTIMAL CONTROL POLICY OF

A FRACTIONAL ORDER BIOLOGICAL MODEL†

SADIQ AL-NASSIR∗, ATEQ ALSAADI

Abstract. A fractional-order biological model with Crowley-Martin func-

tional response is considered and investigated. Prey species grow according
to the logistic growth function and it is subject to harvesting. The exis-

tence, uniqueness, and boundedness of its solution are shown. The consid-
ered model has three fixed points. Further, the local behavior of all possible

equilibrium(fixed) points is studied and analyzed for the considered system

and its discretization. The results show that the fixed points are locally
stable under some conditions. Furthermore, a non-constant harvesting to

find the optimal harvest policy is employed. Also, it is found that con-

stant harvesting can not give the optimal profit. Numerical outcomes are
illustrated to confirm and show the analytic outcomes.
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1. Introduction

Fractional order derivatives have drawn considerable significance in discussing
the dynamical behaviors of biological models due to their efficiency in precisely
describing many nonlinear real-world phenomena. As a result, fractional-order
derivatives have increasing attention from researchers and scientists. Therefore,
they describe their mathematical systems by a set of fractional-order deriva-
tives, see [1, 2, 3, 16, 19, 23, 25]. Also,fractional-order derivatives are used in
electrical circuits theory, control theory etc[7, 22]. Several definitions are con-
sidered in the literature for the fractional-order derivatives, the well-known ones
Grunwald-Letnikov, Riemann-Liouville, Fabrizio, Caputo, Riesz fractional-order
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derivatives, weyl, Marechand and many other definitions, for more details see
[4, 21, 24]. The definition of Caputo has a significant property which is the
fractional derivative of any constant function is zero. So it is used by many
authors in their systems. The authors of [22] gave a physical and geometrical
interpretation of fractional differentiation and integration. For more results and
details about the non-integer derivatives dynamic system, see [17, 18, 23] and
references therein.
Optimal control theory is an essential tool that can be used to solve various prob-
lems in the real world, including biological situations, it is a very useful that can
be used to make perfect and better decisions. In particular, it is applied to man-
age many renewable resources such as fish populations, plant populations, etc.
Many articles in the literature discuss the optimal harvesting to get the optimal
gains of renewable resources- see [8, 5, 10, 11, 12, 30, 31, 32, 33].
In this work, we consider and investigate a fractional order two-dimensional
prey-predator system with Corwely-Martin functional response with harvesting,
and then we investigate its discretization system. First, we consider a constant
harvesting rate, then we extend the considered model to non-constant harvesting
to find the optimal harvest strategy by employing the discrete optimal control
theory.
This paper contains six sections. In section two, the formulation of the mathe-
matical model is done. The boundedness and existence with non-negatively of
its solution are shown and proved. Section three discusses the discretization of
the mathematical model and its behavior. In section four, the Optimal Harvest-
ing approach is employed. Numerical simulations of the theoretical findings are
confirmed and presented in section five. Conclusions are given in section six.

2. The fractional-order system and its equilibria

In [6] P.H. Crowley and E.K. Martin discussed two dimensions prey-predator
model as follows:

dX(T )

dT
= X(T )(a−X(T ))− bX(T )Y (T )

(1 + αX(T ))(1 + βY (T ))
,

dY (T )

dT
=

dX(T )Y (T )

(1 + αX(T ))(1 + βY (T ))
− cY (T ).

(1)

Where X(T ) and Y (T ) represent the number of prey and predator species at
time T , respectively. The parameters a, b, c, and d take a positive constant. The
α is the handling time, and β stands for the magnitude of interference among
predators.
We study and introduce the fractional order mathematical model with constant
harvesting on the prey species. Then, we extend the considered model to the non-
constant harvesting process to get the maximum gain. The model (1) becomes
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as follows:

Dθx(t) = x(t)(a− x(t))− bx(t)y(t)

(1 + αx(t))(1 + βy(t))
− hx(t),

Dθy(t) =
dx(t)y(t)

(1 + αx(t))(1 + βy(t))
− cy(t).

(2)

Here h is the harvesting rate. First, it is considered to be constant and then it
will be a non-constant rate. θ stands for the fractional order such that θ ∈ (0, 1].
Dθx(t) is the Caputo differentiation.

Definition 2.1 ([13, 23]). The Caputo definition is given by the following:
Dθ

t f(x) = I l−θf(x), θ > 0

where l = [θ] and Iγu(t) = 1
Γ(γ)

∫ t

0
(t− µ)γ−lu(t)dt, γ > 0.

Iγ represents the γ order Riemann-Liuouvilleo integral operator,while Dθ

represents the θ− order Caputo operator and Γ(.) stands for the gamma function.

The existence and uniqueness of solution for a general fractional-order deriv-
ative is given in [9].

Lemma 2.2. Let f : [t0,∞) × Ω → Rn, and 0 < θ ≤ 1. If f(t, x) has
the locally Lipchitz condition to the variable x, then the initial value problem
Dθ

t x(t) = f(t, x), t > t0 x0 has a unique solution on [t0,∞)× Ω.

Some helpful results and theorems are needed throughout this work. The
following lemmas are shown in [14, 20, 29].

Lemma 2.3. Assume that f(t) ∈ C[a, b] , 0 < θ ≤ 1, and Dθf(t) ∈ C(a, b],
then:

(1) f(t) = f(a) + 1
Γθ) (D

θf(ξ)(t− a)θ, and, a ≤ ξ ≤ s ∀ s ∈ (a, b].

(2) If Dθf(t) ≥ 0 ∀ t ∈ (a, b), then f(t) is a non-decreasing function
∀ t ∈ [a, b] and if Dθf(t) ≤ 0, ∀t ∈ (a, b), then f(t) is a non-
increasing function ∀ t ∈ [a, b].

Lemma 2.4. (1) Suppose the following Cauchy problem

Dθx(t) = ax(t) + f(t),

x(t0) = b b ∈ R.

Where a ∈ R and 0 < θ ≤ 1 then the solution is as follows:

x(t) = bEθ[a(t− t0)
θ
] +

∫ t

t0

(t− s)
θ−1

Eθ,θ[a(t− s)
θ
]f(s)ds

, and the solution to the following problem

Dθx(t) = ax(t),

x(t0) = b b ∈ R.
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is given by x(t) = bEθ[a(t− t0)
θ
].

(2) Consider that u(t) is a continuous function on [t0,∞] such that

Dθu(t) ≤ −au(t) + µ,

where t0 ≥ 0 represents the initial time and (a, µ) ∈ R2, a ̸= 0 . Then,
its solution is as follows:

u(t) ≤ (ut0 −
µ

a
)Eθ[−a(t− t0)

θ
] +

µ

a
.

Theorem 2.5. Let Ω+ = {(x, y) ∈ R2 ∥x ≥ 0, y ≥ 0} be the set of all non-
negative real numbers in R2 , then each solution of the model (2) with x0 ≥
0 and y0 ≥ 0 is uniformly bounded and non-negative.

Proof. Consider that x(0) > 0 for t = 0, x(t) ≥ 0 ∀ t ≥ 0 is not true.
This implies

x(t) > 0 0 ≤ t < t1,

x(t) = 0 t = t1,

x(t) < 0 t > t1,

for a constant t1 > 0.
The first equation of the model(2) implies that Dθ

t1 = 0 at t = t1. Apply

part 1 in the Lemma 1, we get x(t+1 ) = 0 , contradicts the fact x(t+1 ) <
0, i.e., x(t) < 0, t > t1. Hence, we get x(t) ≥ 0, ∀ t ≥ 0. The same argument
can show that y(t) ≥ 0 ∀ t ≥ 0.

For boundedness, let V (t) = x(t)
b + y(t)

d so that

DθV (t) =
Dθx(t)

b
+

Dθy(t)

d

=
1

b
[x(t)(a− x(t))− bx(t)y(t)

(1 + αx(t))(1 + βy(t))
− hx(t)]

+
1

d
[

dx(t)y(t)

(1 + αx(t))(1 + βy(t))
− cy(t)].

Hence,

DθV (t) + ξV (t) =
ax

b
− x2

b
− hx

b
− cy

d
+

ξx

b
+

ξy

d

= −x2

b
+ (a+ ξ − h)

x

b
+ (ξ − c)

y

d

− 1

b
[x2 − (a+ ξ − h)x+

(a+ ξ − h)2

4
− (a+ ξ − h)2

4
] + (ξ − c)

y

d

= −1

b
(x− a+ ξ − h

2
)2 +

(a+ ξ − h)2

4
+ (ξ − c)

y

d

≤ (a+ ξ − h)2

4b
+ (ξ − c)

y

d
.
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If we choose ξ such that ξ < c, then DθV (t) + ξV (t) ≤ (a+ξ−h)2

4b .

Therefore, V (t) ≤ (V (0)− L
ξ )Eα(−ξtα)+ 1

ξ (1−Eα(−ξtα) and V (t) → ξ as t →
inf and 0 ≤ V (t) ≤ 1

ξ . □

Theorem 2.6. Let Ω = {(x, y) ∈ R2 |V (t) ≤ 1
ξ + ϵ ∀ ϵ > 0}, then for each

x1 = (x0, y0) ∈ {(x, y) ∈ R2 |max{|x| , |y| ≤ γ} for a sufficiently large γ the
system (2) with initial condition x1 has a unique solution s = (x, y) ∈ Ω, that
is defined ∀ t ≥ 0.

Proof. Assume that H(s) = (H1(s), H2(s)) be a mapping where

H1 = x(t)(a− x(t))− bx(t)y(t)

(1 + αx(t))(1 + βy(t))
− hx(t),

H2 =
dx(t)y(t)

(1 + αx(t))(1 + βy(t))
− cy(t).

Then for any s = (x, y), s̄ = (x̄, ȳ) ∈ Ω, we have

∥H(s) − H(s̄∥

= |H1(s) − H1(s̄)| + |H2(s) − H2(s̄)|

=

∣∣∣∣x(t)(a − x(t)) −
bx(t)y(t)

(1 + αx(t))(1 + βy(t))
− hx(t) − (x̄(a − x̄) −

bx̄ȳ

(1 + αx̄)(1 + βȳ)
− hx̄)

∣∣∣∣
+

∣∣∣∣ dx(t)y(t)

(1 + αx(t))(1 + βy(t))
− cy − (

dx̄ȳ

(1 + αx̄)(1 + βȳ)
− cȳ)

∣∣∣∣
=

∣∣∣∣a(x − x̄ − (x
2 − x̄

2
) −

bx(t)y(t)

(1 + αx(t))(1 + βy(t))
+

bx̄ȳ

(1 + αx̄)(1 + βȳ)
− h(x − x̄)

∣∣∣∣
+

∣∣∣∣−c(y − ȳ) +
dx(t)y(t)

(1 + αx(t))(1 + βy(t))
−

dx̄ȳ

(1 + αx̄)(1 + βȳ)

∣∣∣∣
=

∣∣∣∣a(x − x̄) − (x − x̄)(x + x̄) − h(x − x̄) − [
ZZ

z1
]

∣∣∣∣
+

∣∣∣∣−c(y − ȳ) +
dy(x − x̄) − dx̄(y − ȳ) + dβyȳ(x − x̄) + dαxx̄(y − ȳ)

z1

∣∣∣∣
≤a |(x − x̄)| + |(x + x̄)| |(x − x̄)| + h |(x − x̄)| + b |x̄| |y − ȳ| + b |y| |(x − x̄)|

+ bβ |y| |ȳ| |(x − x̄)| + bα |x̄| |ȳ| |(x − x̄)| + c |(y − ȳ)|

+ d |y| |(x − x̄)| + d |x̄| |(y − ȳ| + dβ |y| |ȳ| |(x − x̄)| + dα |x| |x̄| |(y − ȳ)|

≤[a + |(x + x̄)| + h + b |y| + bβ |y| |ȳ| + bα |x̄| |ȳ| + d |y| + dβ |y| |ȳ|] |(x − x̄)|

+ [b |x̄| + c + d |x̄| + dα |x̄| |x|] |(y − ȳ)|

≤L(|(x − x̄)| + |(y − ȳ)|).

Where ZZ = bx̄(y − ȳ) + by(x − x̄) + bβyȳ(x − x̄) − bαx̄ȳ(x − x̄), z1 =
[(1 + αx(t))(1 + βy(t))][(1 + αx̄)(1 + βȳ)], L = Max{M1,M2}, M1 = (a +
h+ |(x+ x̄)|+ b |y|+ bβ |y| |ȳ|+ bα |x̄| |ȳ|+ d |ȳ|+ dβ |y| |ȳ|) and M2 = b |x̄|+
c + d |x̄| + dα |x̄| |x|. Therefore, H(s) has the Lipchitz condition. Hence, from
Lemma 2, we get the result. □

Remark 2.1. We can find the equilibrium(fixed) points of model (2) by setting
Dθx(t) = 0 and Dθy(t) = 0, then the equilibrium points are as follows :
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(1) The point E0 = (0, 0) stands for the trivial equilibrium point that always
exists.

(2) If a > h, then the point E1 = (a− h, 0) exists.
(3) The positive (interior) equilibrium point E2 = (x∗, y∗) exists only if a ∈

(x∗+h, x∗+h+ b
kα ), where x

∗ represents the positive root of the equation

−βdαx3 + (aβdα− βd− βd ∗ hα)x2 + (aβd− bd− βdh)x+ cb+ cbα = 0

and y∗ = (x∗k−ak+hk)
(akβ−x∗kβ−b−βhk) with k = (1 + αx∗).

Remark 2.2. The local asymptotically stable of an equilibrium point E∗ of the
model (2) is established if |arg(λi)| > θπ

2 for i = 1, 2, where λi represent the

eigenvalues of the Jacobian matrix J =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂f
∂y

]
of the considered system

(2) evaluated at E∗ [16, 17].

The Jacobian matrix of the considered system (2) at point (X,Y ) is given by

J(X,Y ) =

[
a− 2aX − bY

k2k1
− h − bX

kk2
1

dY
k2k1

dX
kk2

1
− c

]
and f(λ) = λ2 +Pλ+Q is the characteristic polynomial of J(X,Y ) with P =

c− dX
kk2

1
−a+2aX+ bY

k2k1
+h and Q = dX

kk2
1
− 2ad(X)2

kk2
1

− dhX
kk2

1
+2acX−ac+ bcY

k2k1
+ch.

Where k = 1 + αX and k1 = 1 + βY .

Theorem 2.7. (1) The trivial equilibrium(fixed) point E0 is locally stable
if and only if a < h.

(2) If a < 1
2 and d(a−h)

k < c, then the equilibrium point E1 is stable point.

Proof. (1) It is easy to check that the eigenvalues of the Jacobian matrix
JE0 at the point E0 are λ1 = a − h and λ2 = −c. So that the results
are obtained.

(2) The Jacobian matrix JE0
at the E1 is :

JE1
=

[
a− 2a(a− h)− h − b(a−h)

k

0 d(a−h)
k − c

]
.

Then the eigenvalues of the matrix JE1 at the point E1 are λ1 =

a− 2a(a− h)− h and λ2 = d(a−h)
k − c. Therefore, the results can easily

be obtained.
□

The following proposition is proved in [1] which is needed to study the be-
havior of the model (2) at the positive equilibrium point E2.
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Lemma 2.8. [1] Consider that p(x) = x2 + a1x + a2 is a polynomial of degree
2 if one of the following holds

(1) Routh-Hurwitz conditions, namely a1 > 0 and a2 > 0.

(2) a1 < 0, 4a2 > a21 and

∣∣∣∣tan−1(

√
4a2−a2

1

a1

∣∣∣∣ > θπ
2 ,

then the roots ri i = 1, 2 of p satisfy |arg(ri)| > θπ
2 .

Proof. See[1]. □

Theorem 2.9. The unique positive equilibrium point E2 of the model (2) is
locally stable if one of the following statements holds.
a) P > 0, and Q > 0

b)P < 0, 4Q > P 2 and tan−1(

√
4Q−P 2

P ) > θπ
2 , where P and Q are defined as

before.

Proof. The Jacobian matrix of the system (2) at the point E2 is :

JE2
=

[
a− 2ax∗ − by∗

k2k1
− h − bx∗

kk2
1

dy∗

k2k1

dx∗

kk2
1
− c

]
Hence, the characteristic polynomial of JE2 is f(λ) = λ2+Pλ+Q = 0 with P =

c− dx∗

kk2
1
−a+2ax∗+ by∗

k2k1
+h and Q = dx∗

kk2
1
− 2ad(x∗)2

kk2
1

− dhx∗

kk2
1
+2acx∗−ac+ bcy∗

k2k1
+ch.

Where k = 1 + αx∗ and k1 = 1 + βy∗.
Now, applying Proposition 2.8 by setting a1 = P and a2 = Q, the results are
obtained. □

3. The discretization system and its behavior

In this part, we will study and discuss the discretization of the considered
system (2). We apply the discretization method to the considered model (2),
then the discretized system is

xn+1 = xn +
Sθ

Γ(θ + 1)
[xn(a− xn)−

bxnyn
(1 + αxn)(1 + βyn)

− hxn],

yn+1 = yn +
Sθ

Γ(θ + 1)
[

dxnyn
(1 + αxn)(1 + βyn)

− cyn].

(3)

The definitions of the a, b, c, d, h, θ are the same as the previous interpretation.
S is a positive number. The Jacobian matrix of the discretized model(3) at any
point (x, y) is then

J =

[
1 +ma− 2max− mby

k2k1
−mh −mbx

kk2
1

mdy
k2k1

1 + mdx
kk2

1
−mc

]
,

where m = Sθ

Γ(θ+1) , k = 1 + αx and k = 1 + βy.
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Remark 3.1. Consider the following discrete system

−→x t+1 = f(−→x t) t = 1, 2, 3, ... (4)

The point E∗ is called a fixed(equilibrium) point of (4) if E∗ = f(E∗) and it is
called stable point if |λi| < 1 for i = 1, 2, ...., n, where λi stand for the eigenvalues
of the Jacobian matrix J evaluated at E∗. E∗ is called a non-hyperbolic point
if |λi| = 1 for some i.

Theorem 3.1. (1) The trivial fixed point E0 of the discretized model (3) is
locally stable if a ∈ (h − 2

m , h) and c < 2
m . The point E0 is a non-

hyperbolic point if a = h or a = h− 2
m or c = 2

m .

(2) The fixed point E1 of the discretized system (3) is locally stable if m <
2

( 2a
k2 −1)(a−h)

with k2

a < 2 and c ∈ (d(a−h)
k , d(a−h)

k + 2
m ). It is non-

hyperbolic point if m = 2
( 2a
k2 −1)(a−h)

with k2

a < 2 or c = d(a−h)
k or c =

d(a−h)
k + 2

m .

Proof. (1) The eigenvalues of J , the Jacobian matrix of the discretized
model(3) at E0, are λ1 = 1+ma−mh and λ1 = 1−mc. Therefore, the
results can be easily obtained.

(2) The Jacobian matrix J at E1 of the discretized model (3) is given by

JE1
=

[
1 +ma− 2ma(a−h)

k2 −mh − bm(a−h)
k

0 1 + md(a−h)
k −mc

]
.

Therefore, the eigenvalues are λ1 = 1+ma− 2ma(a−h)
k2 −mh and λ2 =

1 + md(a−h)
k −mc. So that if 0 < m < 2

( 2a
k2 −1)(a−h)

with k2

a < 2 , then

0 < m(( 2ak2 − 1)(a− h)) < 2 and − 1 < −1 +m(( 2ak2 − 1)(a− h)) < 1

this implies
∣∣∣1 +ma− 2ma(a−h)

k2 −mh
∣∣∣ < 1 and then |λ1| < 1.

Now if d(a−h)
k < c < d(a−h)

k + 2
m , then −1 < 1 + md(a−h)

k − mc < 1
this implies that |λ2| < 1. Therefore, the point is locally stable.

□

We use the Schur-Chohn criteria for studying the dynamic behavior of the
positive fixed point. The next lemma appeared in [26].

Lemma 3.2. Let P2(x) = x2 + p1x + q1 be a polynomial of degree 2 then its
roots are inside the unit disk if and only if P2(1) > 0, P2(−1) > 0 and q1 < 1.

Proof. see[26]. □

Theorem 3.3. The positive fixed point E2 of the model (4)is local stable if the
following conditions hold:
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(1) axA+ cB > dxC + ac,

(2) mxD + E > mB1 +mxC1,

(3) mE1 + a+ dx
kk2

1
< xH +H1.

where A = d
kk2

1
+2c B = h+ by

k2k1
, C = 2ax

kk2
1
+ by

k3k3
1
+ h

kk2
1
, D = 2d

kk2
1
+ mad

kk2
1
+

2mac, E = 4 + 2am + m2bcy
k2k1

+ m2hc B1 = 2c + 2h + mac + 2mby
k2k1

, C1 =

4a− 2madx
kk2

1
+ mdh

kk2
1
+ mbdy

k3k3
1
, E1 = adx

kk2
1
+ 2acx+ bcy

k2k1
+ hc, H = 2a+ mbdy

k3k3
1
+

mdh
kk2

1
, H1 = by

k2k1
+ h+ c+ amc.

Proof. The Jacobian matrix at E2 of the discretized model (3) is given by

J =

[
1 +ma− 2max− my

k2k1
−mh) −mbx

kk2
1

mdy
k2k1

1 +m(mdx
kk2

1
−mc)

]
,

where m = Sθ

Γ(θ+1) , k = 1 + αx and k = 1 + βy. The characteristic polynomial

of JE2
is then F (λ) = λ2 + p1λ + q1 = 0 with p1 = −2 − mdx

kk2
1
+ mc − am +

2amx+ mby
k2k1

+mh q1 = 1+ma−2max− mby
k2k1

−mh+ mdx
kk2

1
+ m2adx

kk12 − 2m2adx2

kk2
1

−
m2bdxy
k3k3

1
− m2dxh

kk2
1

−mc−m2ac+ 2m2acx+ m2bcy
k2k1

+m2hc.

Now if the condition 1 holds axA+ cB > dxC + ac, then we have

ax( d
kk2

1
+2c)+c(h+ by

k2k1
) > dx( 2ax

kk2
1
+ by

k3k3
1
+ h

kk2
1
)+ac this gives m2axd

kk2
1

+2m2axc+

m2ch+ cm2by
k2k1

> 2m2adx2

kk2
1

+ m2dxby
k3k3

1
+ m2dxh

kk2
1

) +m2ac. Hence m2axd
kk2

1
+ 2m2axc) +

m2ch + cm2by
k2k1

2m2adx2

kk2
1

+ m2dxby
k3k3

1
+ m2dxh

kk2
1

+m2ac > 0, by a simple substitution

we have P2(1) > 0.
If the condition 2 holds that means mxD+E > mB1+mxC1, then we have
2mxd
kk2

1
+ m2xad

kk2
1

+ 2m2xac + 4 + 2am + m2bcy
k2k1

+ m2hc > 2mc + 2mh + m2ac +

2m2by
k2k1

+ 4mxa − 2m2adx2

kk2
1

+ m2dhx
kk2

1
+ m2xbdy

k3k3
1

, by a simple substitution we have

P2(−1) > 0.

If the condition 3 mE1+a+ dx
kk2

1
< xH+H1, then amdx

kk2
1

+2amcx+ bmcy
k2k1

+

hmc+ a+ dx
kk2

1
< 2ax+ mbdxy

k3k3
1

+ mdhx
kk2

1
+ by

k2k1
+ h+ c+ amc this gives amdx

kk2
1

+

2amcx+ bmcy
k2k1

+ hmc+ a+ dx
kk2

1
− 2ax− mbdxy

k3k3
1

− mdhx
kk2

1
− by

k2k1
− h− c− amc < 0

from this we have q1 < 1. Therefore, by lemma(3.2), the positive point of
the discretized model is locally stable. □

4. Optimal harvesting process

This section is concerned with using the discrete version optimal control
theory. It is impossible to remove more than the population so we use an
exponential cost function. Here the control variable is h∗

n and the aim is
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to maximize the net profit that described by the following objective function
J(h∗

n) = MaxJ(hn), hn ∈ U. Here U is the set of other control variables, where

J(hn) =

T∑
n

c1(1− ehn)xn − c2(1− ehn)2,

xn+1 = xn +
Sθ

Γ(θ + 1)
[xn(a− xn)−

bxnyn
(1 + αxn)(1 + βyn)

− (1− ehn)xn],

yn+1 = yn +
Sθ

Γ(θ + 1)
[

dxnyn
(1 + αxn)(1 + βyn)

− cyn],

(5)

where c1 and c2 are positive values, and the cost function is given by c2(1 −
ehn)2 . We solve the previous optimal control harvesting by using the maximum
principle of Pontryagin[15, 27, 28].

Theorem 4.1. Consider we have an optimal control solution h∗
n with the op-

timal state solutions x∗
n and y∗n which maximizes the objective function J(h∗

n)
then the following shadow price functions λn, and µn for n = 1, 2, ....T −1 exist
which satisfy:

λn = c1(1− ehn) + λn+1[1 +ma− 2max− my

k2k1
− (1− ehn)] + µn+1(−

mbx

kk21
).

µn = λn+1
mdy

k2k − 1
+ µn+1[1 +m(

mdx

kk21
−mc).] (6)

with m = Sθ

Γ(θ+1) , λT = 0, and µT = 0. So the form of the characterization

optimal solution is as follows: h∗
n = ln( (c1−λn+1)xn

2c2
).

Proof. Define the Hamiltonian functional for n = 1, 2, ....T − 1 as follows:

Hn = c1(1− ehn)xn − c2(1− ehn)2 + λn+1[xn +m(xn(a− xn)−
bxnyn

(1 + αxn)(1 + βyn)

− (1− ehn)xn)] + µn+1[yn +m(
dxnyn

(1 + αxn)(1 + βyn)
− cyn)].

(7)
Then for n = 1, 2, ....T − 1, the necessary conditions are

λn

=
∂H
∂xn

= c1(1− ehn) + λn+1[1 +ma− 2max− my

k2k1
− (1− ehn)] + µn+1(−

mbx

kk21
)

µn =
∂H
∂yn

= λn+1
mdy

k2k − 1
+ µn+1[1 +m(

mdx

kk21
−mc)] (8)

From the optimality condition ∂H
∂h∗

n
= 0, one can obtain the form of the charac-

terization of the optimal solution, which is given by h∗
n = ln( (c1−λn+1)xn

2c2
). □

Therefore, the previous optimal control problem is numerically solved to get
the optimal control solution.
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5. Numerical outcomes

In this section, the confirmation of our theoretical results is done. In Figure
1 we have shown the local stability of the equilibrium point E0, E1 and E2,
respectively. The choice of parameters for the point E0 is as follows: a =
0.4, b = 0.7, α = 0.5, β = 0.5, h = 0.5, c = 0.2, d = 0.5 and θ = 0.95.
The initial values are x0 = 6 and y0 = 1.4. For the point E1 the param-
eters are a = 0.49, b = 0.6, α = 0.5, β = 0.5, h = 0.05, c = 0.15, d =
0.4 and the initial vales are x0 = 3.5 and y0 = 0.2. For the unique interior
point E1 the parameters are a = 4, b = 0.6, α = 0.5, β = 0.5, h = 0.2, c =
0.3, d = 0.3 and the initial vales are x0 = 3.7 and y0 = 0.8. Figure 2 indicates
the local behavior of the points with the same previous parameters except for
the value of θ = 0.83.

(a) (b)

(c)

Figure 1. The local behavior of the equilibrium points of system
(2). (a) For the point E0. (b) For the point E1. (c) For the positive

point E2. Here θ = 0.95.
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(a) (b)

(c)

Figure 2. The same values of parameters are used in Figure 1,
but θ = 0.83. (a) For the point E0. (b) For the point E1. (c) For

the unique positive point E2.

In Figure 3, we have to show the behavior of the equilibrium points of the
discretized model (3). We choose the parameters values of E0 as follows: a =
0.29, b = 0.7, α = 0.5, β = 0.5, h = 0.3, c = 0.3, d = 0.2, S = 0.3 and
x(1) = 2.3, y(1) = 0.2 are the initial values with θ = 0.95. For the point E1,
we set these parameters values a = 0.9, b = 0.7, α = 0.5, β = 0.5, h =
0.3, c = 0.5, d = 0.5, S = 0.5 and the initial values are x(1) = 0.9, y(1) =
0.5 with θ = 0.95. Next values of parameters are taken for the positive point
a = 2, b = 0.7, α = 0.2, β = 0.2;h = .02, c = 0.03, d = 0.4, S = 0.5, θ =
0.83 and x(1) = 1.7, y(1) = 5.59 are the initial values . Figure 4 shows the local
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behavior of all equilibrium points of the discretized model (3) with the same
previous values of parameters with another value of θ, namely θ = 0.83.

(a) (b)

(c)

Figure 3. (a) for the point E0. (b) For the point E1. (c) For the
unique positive point E2. Here θ = 0.95.
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(a) (b)

(c)

Figure 4. Here θ = 0.83. (a) For the point E0. (b) For the point
E1. (c) For the unique positive point E2.

For the optimal control problem, the optimality system is numerically solved
by an iterative method which is described in [14]. We begin with an initial value
for the control variable, solve the state equation forward, and the adjoint sys-
tem backward. We update the control variable until convergence of successive
iterates is achieved. The next values of parameters are a = 2, b = 0.7, α =
0.2, β = 0.2, c = 0.03, d = 0.4, q = 1, θ = 0.95, c1 = 0.01, c2 =
0.01. The initial values are x0 = 0.16 and y0 = 5.7. We obtained the op-
timal value of the objective function J(h∗) = 0.0324, however, the values of
J with different constant control strategies are J(0.07) = 0.0314, J(0.08) =
0.0322, J(0.085) = 0.0323, J(0.0875) = 0.0322, J(0.09) = 0.0321. Figure 5
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shows the prey and predator populations with(without) control harvesting, the
fixed harvesting strategy, and the optimal control variable as a function of time.

(a) (b)

(c)

Figure 5. (a) For the predator population with(without) control
harvesting(removing) and the fixed harvesting strategy (b) For the

prey population. (c) For the optimal control(removing) as a
function of time.

6. Conclusions

Fractional calculus has been successfully used and applied to describe or model
many areas of science that cannot be set by other forms of equations. So,
this article is concerned with a study of the two-dimensional biological system
that is described by fractional-order derivative with CrowleyMartin functional
response. In figures 1-2, we can see that the system (2.2) has three equilibrium
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points, namely, E0, E1 andE2, they also confirm the local stability of them for
θ = 0.95 and θ = 0.83, respectively. Figures 3-4 confirm the behavior of the
equilibrium points of the discretized model (3.1). them for θ = 0.95 and θ =
0.83, respectively. In Figure 5(a), one can see the impact of constant harvesting
and non-constant harvesting on the density of the predator. In Figure 5(b), it
can easily see the impact of constant harvesting and non-constant harvesting on
the density of the prey. While Figure 5(c) shows the optimal control(removing)
as a function of time. We also noted that the populationTMs extinction will
occur with a heavily constant harvesting rate. It has been seen that the optimal
profit does not occur at the constant harvesting rate. We followed the discrete
Pontryagin maximum principle to get the optimality problem.
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