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THE H-INFINITY ESTIMATOR DESIGN FOR IPMSM

WITH DISTURBANCE OBSERVER†

SHIN WON LEE

Abstract. To achieve precise control performance of an electric motor,
it is necessary to compensate for load torque, various parameter errors,

and model errors. To this end, the load torque acting on the motor rota-

tion shaft is designed and estimated using a disturbance estimator. The
estimated load torque was used as input, and the estimated error in the

load torque was assumed to be state noise, with current and speed states

estimated using the H∞ filter. As a result of applying the disturbance and
state values estimated from the 1-horsepower IPMSM to speed control, a

speed tracking error within 0.1[%] was obtained in steady state.
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1. Introduction

Electric motors with various performance structures have been developed,
and with the development of battery technology, the production and research of
driving devices using electric motors are actively underway [1-5]. Particularly,
to control autonomous driving devices that include the concept of autonomous
driving, power and drive control of the electric motor are fundamentally re-
quired. Additionally, controlling the speed and direction of the moving object’s
movement requires driving control as a higher-level control. To control the op-
eration of an electric motor, observation of the motor’s state is required, and
a sensor is configured for this purpose. By designing a feedback control sys-
tem using the observed state, the entire system is configured to satisfy various
control performances. Sensors for measuring conditions can generate significant
noise depending on the environment and may also include system uncertainty.
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Additionally, certain control conditions may be difficult or require great effort
to measure. The Kalman Filter theory, a probabilistic estimation theory devel-
oped in the 1950s, studies how to remove noise included in signals measured by
sensors. It is still applied, developed, and widely used today [1-8]. There are
several considerations when estimating signals using the Kalman filter. First, we
must know the average and interdependence of system uncertainty and sensor
noise. ”Knowing” here means being able to express something numerically or
mathematically. Second, the covariance of system uncertainty and sensor noise
must be known. The Kalman filter is an estimation algorithm that minimizes the
standard deviation of the state error by matching the state estimated through
a mathematical system with the state signal measured through an observer,
thereby minimizing covariance. Lastly, we must know the system and observer
matrices. However, because these matrices are derived from dynamic modeling
and undergo a linearization process, parameter errors between the system and
observer exist. Excellent state estimation performance is urgently needed in
many fields where control is currently used. The Kalman filter, which minimizes
the variance of estimation error, can achieve excellent estimation performance
if the above considerations are met. However, even in situations where this is
not the case, state estimation performance is required. Therefore, an algorithm
that minimizes estimation error in the worst-case scenario, which includes errors
in the system model, is proposed [1, 6]. This study assumes a systematic error
and investigates the H∞ filter algorithm that minimizes the estimation error
even when the systematic error is large. It designs and estimates a disturbance
observer with load torque acting on the motor’s rotating shaft [9-12] and models
the estimated load torque as an input to the motor mechanical system. The
difference between the actual load torque and the estimated load torque is as-
sumed to be noise and applied to the H∞ filter algorithm. Even if there is a
large difference between the actual and estimated load torque, the design aims
to achieve performance that minimizes the state estimation error.

2. The Discrete time H∞ filter [1]

The H∞ estimation algorithm defines the cost function as in Eq. (1) based
on game theory.

J =

∑N−1
k=0 ||zk − ẑk||2Sk

||x0 − x̂0||2P−1
0

+
∑N−1
k=0 (||wk||2Q−1

k

+ ||vk||2R−1
k

)
(1)

The discrete time system associated with the algorithm for finding the optimal
estimate ẑk that minimizes the cost function J is as follows:

xk+1 = Fkxk + wk (2)

yk = Hkxk + vk (3)

zk = Lkxk, ẑk = Lkx̂k (4)
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Eq. (2) is a discrete system, and xk,uk are the state vector and input vector. wk
is noise added to the state vector. In Eq. (3), yk is the output vector, and vk is
the noise included in the output vector. xk in Eq. (4) is an estimate. And Sk,
P0, Qk, Rk in Eq. (1) are the weight matrices multiplied by each error, which are
symmetric matrices and positive definite matrices. Since Eq. (1) is a fractional
expression, the equation can be converted to allow calculation as follows.

J = −1

θ
||x0 − x̂0||2P−1

0
+

N−1∑
k=0

(||zk − ẑk||2Sk
− 1

θ
(||wk||2Q−1

k

+ ||vk||2R−1
k

)) < 1 (5)

J∗ = min
ẑk

max
x0,wk,vk

J (6)

The solution to obtain the optimal cost function J∗ is to find a stationary point
such that J is maximized for the noise wk, vk and initial values x0, and J is
minimized for the state ẑk. θ is a parameter used to set the maximum of the
cost function. To make Eq. (6) easier to process, the following equation is used.

||zk − ẑk||2Sk
= ||xk − x̂k||2S̄k

, S̄k = LTk SkLk (7)

∥|vk||2R−1
k

= ||yk −Hkxk||2R−1
k

(8)

Eq. (7) is an expression converted using Eq. (4) and ẑk = Lkx̂k, and Eq. (8) is
an equation created from Eq. (3). Converting the cost function from Eq. (5) to
Eq. (6) using Eq. (7) to Eq. (8) is as follows:

J = −1

θ
||x0− x̂0||2P−1

0
+

N−1∑
k=0

(||xk− x̂k||2S̄k
− 1

θ
(||wk||2Q−1

k

+ ||yk−Hkxk||2R−1
k

)) (9)

J∗ = min
x̂k

max
x0,wk,yk

J (10)

The optimal state x̂k that leads to the optimal cost function J∗ is finding the
stationary point where J is maximized for noise wk, observed value yk, and initial
value x0, and J is minimized for state x̂k.

3. The H∞ filter design of the IPMSM

The IPMSM model is as follows Eq. (11) to Eq. (14). Eq. (11) to Eq.
(12) is the electrical system expressed on the virtual DQ axis, and Eq. (13) is
the mechanical system of the motor rotation shaft. And Eq. (14) shows how
to generate torque with the currents in Eq. (11) to Eq. (12). In this way,
the electromagnetically generated torque Eq. (14) is input into Eq. (13) and
operates to generate rotation of the electric motor.

d

dt
id = −Rs

Ld
id +

pLq
Ld

ωriq +
1

Ld
Vd (11)

d

dt
iq = −Rs

Lq
iq −

pLd
Lq

ωrid −
pψf
Lq

ωr +
1

Ld
Vd (12)

d

dt
ωr = −Bm

Jm
ωr −

1

Jm
Tl +

1

Jm
Te (13)
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Te =
3

2
p(ψf + (Ld − Lq)id)iq (14)

Vd, Vq are the input voltage of d-axis and q-axis respectively, id, iq are the
currents of d-axis and q-axis respectively, ωr is mechanical velocity of rotor, Te
is the torque caused by electromagnetic forces, Tl is the load torque, Rs is the
phase resistance of the stator, Ld and Lq are the inductances of the d-axis and
q-axis respectively, ψf is the flux of the rotor permanent magnet, p is the pole
pair of the permanent magnet, Jm is the moment of inertia of the motor rotor,
and Bm is viscous friction coefficient of the motor rotor.

d

dt
xe =

∂f(x, u)

∂x
|x̂ xe +

∂f(x, u)

∂u
|û ue + w (15)

ye = (y − ŷ)T = (id − îd iq − îq ωr − ω̂r)
T (16)

xe = (x− x̂)T = (id − îd iq − îq ωr − ω̂r)
T (17)

ue = (u− û)T = (Vd − V̂d Vq − V̂q Tl − T̂l)
T (18)

∂f(x, u)

∂x
|x̂ =

 −Rs

Ld
p
Lq

Ld
ωr p

Lq

Ld
iq

−pLd

Lq
ωr −Rs

Lq
−pLdid+ψf

Lq
3p
2Jm

(Ld − Lq)iq
3p
2Jm

((Ld − Lq)id + ψf ) −Bm

Jm


∂f(x, u)

∂u
|û = (

1

Ld

1

Lq
− 1

Jm
)T (19)

Eq. (15) to Eq. (19) perform Taylor series expansion of the nonlinear function
f(x, u) from Eq. (11) to Eq. (14) for the states x̂ and û and omit the quadratic
or higher order terms. ue is the difference between the actual control input
value and the calculated control input value, and this value is assumed to be
zero. T̂l is the estimated disturbance value, and the difference between the actual
disturbance Tl and this is considered as the system noise w. Assuming that the
discrete sampling period Ts is small, the motor model discretized using Euler’s
approximation is as follows.

xe,k+1 = (I + Ts
∂f(x, u)

∂x
|x̂)kxe,k + w = Fkxe,k + wk (20)

Eq. (20) reconstructs Eq. (9) using the Lagrange multiplier λ so that it is
included as a constraint in the cost function Eq. (9).

J = −1

θ
||xe,0 − x̂e,0||2P−1

0
+

N−1∑
k=0

(||xe,k − x̂e,k||2S̄−1
k

− 1

θ
(||wk||2Q−1

k

+ ||ye,k −Hkxe,k||2R−1
k

) +
2λTk+1

θ
(Fkxe,k + wk − xe,k+1)) (21)

There are two strategies for finding the value that optimizes the cost function
in Eq. (21). First, we find the stationary point of the cost function for system
noise wk, state xe,k, and initial value xe,0. Next, by finding the observation
value ye,k where the cost function is maximum and x̂e,k where the cost function
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is minimum among the stationary points, the estimation algorithm is obtained
as follows.

S̄k = LTk SkLk (22)

Kk = Pk[I − θS̄kPk +HT
k R

k
−1HkPk]

−1HT
k R

−1
k (23)

x̂e,k+1 = Fkx̂e,k + FkKk(ye,k −Hkx̂e,k) (24)

Pk+1 = FkPk[I − θS̄kPk +HT
k R

k
−1HkPk]

−1FTk +Qk (25)

P−1
k − θS̄k +HT

k R
k
−1Hk > 0 (26)

Eq. (24) is an estimated value that minimizes the cost function for state error.
The equation for estimating the state value is as follows.

x̂k+1 = x̂k + x̂e,k+1 (27)

4. The Disturbance Observer

The load torque Tl, which acts on the motor rotation shaft in real time, is
an essential factor for achieving good performance in controlling the motor and
estimating state variables. However, since load torque is not easy to measure, a
disturbance observer is designed to reflect the estimate in the control input and is
used as an input to the state estimator to improve state estimation performance.
The disturbance observer is illustrated in the mechanical system of the motor
as shown in Eq. (13).

Figure 1. IPMSM mechanical system with the Disturbance
Observer.

The transfer function G(s), which uses ωr as the input and Te as the output
by Laplace transforming Eq. (13), is as follows:

ωr =
1

Jms+Bm
(Te(s)− Tl(s)) = G(s)(Te(s)− Tl(s)) (28)

Ĝ(s)−1 in Figure 1 is the inverse function of G(s), with ωr as input and u as

output. The load torque T̂l is as follows: G(s)−1 in Figure 1 is the inverse
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function of G(s), with ωr as input and u as output. The load torque T̂l is as
follows:

p = Q(s)u (29)

ûp = Q(s)G(s)−1G(s)(u− Tl(s)) (30)

T̂l(s) = p− ûp (31)

Q(s) and G(s)−1 are the filters to be designed, and by substituting Eq. (29) and
Eq. (30) into Eq. (31), the result is as follows:

T̂l(s) = Q(s)((1−G(s)−1G(s))u+G(s)−1G(s)Tl(s)) (32)

In Eq. (32), G(s)−1 is designed so that G(s)−1G(s) ≈ 1 . If Q(s) is designed as

a low-pass filter with a gain of 1 in the steady state, T̂l(s) can estimate Tl(s).

u = Te(s) +KT̂l (33)

(1−Q(s)(1−G(s)−1G(s))K)T̂l

= Q(s)((1−G(s)−1G(s))Te(s) +G(s)−1G(s)Tl(s)) (34)

Eq. (33) forms the input u by adding T̂l (s) to the input Te(s), and the result
of substituting Eq. (33) into Eq. (32) is Eq. (34).

G(s)−1G(s) ≈ 1 (35)

Q(s) =
1

τs+ 1
(36)

ûp
ωr

= Q(s)G(s)−1 =
J̄m + B̄m
τs+ 1

(37)

Therefore, G(s)−1 is designed according to Eq. (35), and Eq. (36) is designed
as a system with the first delay element as the transfer function. J̄m and B̄m
are parameters set for mathematical calculation processing. Eq. (37) is formed
based on the conditions outlined in Eq. (35) and Eq. (36). To convert Eq. (37)
to the discrete time domain, the parameters are configured as follows:

ûp
q

p

ωr
=
J̄m + B̄m
τs+ 1

(38)

ûp = J̄msq + B̄mq (39)

ωr = τsq + q (40)

The inverse Laplace transformation of Eq. (39) and Eq. (40) into the time
domain is as follows:

ûp(t) = J̄mq̇(t) + B̄mq(t) (41)

ωr(t) = τ q̇(t) + q(t) (42)
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This result is obtained by Euler’s approximation of the equations of the state
equations in Eq. (41) and Eq. (42) with a sampling period Ts.

ûp(k) = (B̄m − J̄m
τ

)q(k) +
J̄m
τ
ωr(k) (43)

If Eq. (29) is designed using Eq. (36), it is as follows, where k represents discrete
time steps.

p(k) = (1− Ts
τ
)p(k − 1) +

Ts
τ
u(k − 1) (44)

Using the estimation results from Eq. (43) and Eq. (44), the load torque is
estimated as follows:

T̂l(k) = p(k)− ûp(k) (45)

5. Simulation

PSIM is used for simulation program. The IPMSM model provided in PSIM
uses the motor parameters shown in Table 1.

Table 1. IPMSM parameter.

Motor Rated Power 3-phase 1hp
Motor Rated Speed 1200 RPM
P (Pole Number) 4
Rs (Stator Resistance) 0.048 Ω
Ld (D-axis Inductance) 0.42 mH
Lq (Q-axis Inductance) 1.2 mH
Jm (Moment of Inertia) 0.0008 Kgm2

Bm (Friction coefficient) 0.001 Nm/rad/s
ψf (Magnetic Flux Constant) 0.04135 volt/rad/s

To evaluate the performance of the designed disturbance observer and H∞

filter, the IPMSM was operated at a reference angular velocity of 125.6 [rad/s].
It operated with no load from 0 to 2 seconds, after which a constant load of 0.5
[Nm] was applied to the rotation axis at 2 seconds. An error of 10 [%] in the
system model was also applied. Rs was 0.0432 [Ω], Ld was 0.378 [mH], Lq was
1.08 [mH], and Jm was 0.00072 [Kgm2].

The first picture in Figure 2 shows the applied constant load and estimated
load torque. As a result of the disturbance estimation, the average is about 0.02
[Nm] from 1 second to 2 seconds, with an amplitude of about 0.1 [Nm], and
noise of 0.1 [A] and ±0.5 [rad/sec] is added to the phase current and angular
velocity, respectively. After 2 seconds, the estimation of a constant load of 0.5
[Nm] reached steady state after about 2.3 seconds. The second and third figures
show the results of applying the H∞ filter with the estimated load torque as
input.
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Figure 2. IPMSM driving result at angle velocity 125.6
rad/s.

The angular velocity in the second picture is about 143 [rad/sec] at 0.19
seconds, resulting in an overshoot of 13.9 [%], and about 105 [rad/sec] at 2.1
seconds, resulting in an undershoot of 16.4 [%]. The parameter θ used in the
H∞ filter was set to 10. The third figure shows the estimation error of angular
velocity. At 0.14 seconds, the maximum value is 7.7 [rad/sec], and at 2.1 seconds,
the minimum value is -2.4 [rad/sec].

6. Conclusion

In this paper, for precise tracking control of IPMSM, load torque was esti-
mated using a disturbance observer. Noise included in the state was removed,
and an H∞ filter was designed for state estimation. The smaller the error of the
system model and the estimation error of the disturbance, the better the control
performance; however, this is not the case in reality, and the control performance
deteriorates. The H∞ filter has the advantage of minimizing estimation error
even in the worst-case scenario where model error is included. By setting the
system model error to 10 [%], the state estimation results achieved robust per-
formance with a steady-state error within 1 [%]. Future research will focus on
developing an algorithm that can operate robustly despite parameter changes
by designing a disturbance observer for the electrical system and estimating and
updating system parameters.
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