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Abstract. This paper investigates the existence, uniqueness, and stability
properties of solutions for a nonlinear neutral fractional differential system

(NFDS) with infinite delay (ID). The system incorporates the concept of
conformable fractional derivatives (CFD). Our analysis employs the Ba-

nach fixed point theorem to establish the existence and uniqueness of so-

lutions. To illustrate the theoretical framework, we conclude by presenting
an illustrative example.
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1. Introduction

Fractional calculus is an extension of classical derivatives that studies the
non-integer order of differentiation and integration. This field provides a com-
prehensive framework for modeling phenomena characterized by memory and
hereditary properties. In this introduction, we explore the historical evolution,
fundamental principles, and expanding applications of fractional calculus across
various scientific and engineering disciplines [18, 19, 12].

The roots of fractional calculus trace back to the 17th century when math-
ematicians such as Leibniz and L’Hopital first pondered the concept of frac-
tional derivatives. Over the centuries, prominent figures like Euler, Riemann,
and Grunwald significantly contributed to the theoretical foundations of this
discipline. Despite its early beginnings, fractional calculus remained relatively
obscure for many years [29, 23, 4]. However, recent decades have witnessed a
resurgence of interest, driven by the efficacy of fractional derivatives and inte-
grals in modeling complex dynamics observed in real-world systems [13, 10, 3].
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Fractional calculus introduces fractional-order derivatives and integrals, gen-
eralizing traditional integer-order operators. These operators provide a detailed
representation of processes with “memory”, where past states influence future
behavior in a non-local manner. This capability makes fractional calculus a pow-
erful tool for modeling a variety of phenomena, including: Anomalous diffusion
[27] (processes where the rate of diffusion is not governed by the classical Fickian
law, often observed in complex materials and biological systems); viscoelasticity
[28] (materials that exhibit both elastic and viscous behavior, with fractional
derivatives capturing the memory effects crucial for accurate modeling); fractal
systems (structures exhibiting self-similarity at different scales, where fractional
calculus provides a natural framework due to its inherent non-local nature) and
control theory [11] (designing control systems for complex dynamical processes,
where fractional derivatives can model systems with memory or long-range de-
pendence).

The CFD is a relatively new definition of a fractional derivative, introduced
by Abdel-Rahman Khalil et al. in 2014 [22]. Unlike some classical fractional
derivatives (e.g., Riemann-Liouville, Caputo), the conformable derivative offers
several advantages [2, 16, 7, 9]. Conformable fractional differential equations
(CFDEs) have emerged as a significant area of investigation within the broader
field of fractional calculus.

In 2017, Bayour and Torres [5] explored the existence results for the following
system: {

Dρ
0ω(7) = 𭟋(7, ω(7)), 7 ∈ [0, Z], Z > 0, ρ ∈ (0, 1],

ω(0) = ω0,
(1)

where Dρ
0 signify the CFD of order ρ. Subsequently, Zhong et al. [32] discussed

the existence and stability outcomes for the system (1) with non-local condi-
tions under appropriate conditions. Wang and Bai [30] applied upper and lower
solution techniques alongside monotone iterative methods to establish solutions
within the anti-periodic impulsive framework.

Bouaouid et al. [7] adopted a semigroup theory perspective to investigate var-
ious problems similar to (1), including scenarios with non-local conditions under
different assumptions. More recently, Hannabou et al. [16] explored a novel class
of non-local integro-differential equations (IDEs) involving the CFD. Their ap-
proach leverages the theory of operator semigroups and fractional calculus to
define a solution concept within this domain. The analysis utilizes powerful
tools from fixed-point theory, employing appropriate theorems to guarantee the
existence and uniqueness of solutions. Li et al. [26] focused on conformable
neutral systems, establishing existence results using fixed-point theorems. Xiao
et al. [31] investigated conformable stochastic functional differential equations
(CSFDEs) of neutral type, proving existence and uniqueness, followed by sta-
bility analysis. Abbas and Benchohra [1] considered the system (1), addressing
existence and uniqueness for systems with both finite and infinite delays using
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fixed-point theory, and further extended their results to neutral-type systems.
Hilal et al. [20] examined fractional conformable neutral-type systems with a
non-local condition, proving the existence and uniqueness of mild solutions via
fixed-point theorems. Building on Xiao et al. [31], another study explored op-
timal control for conformable fractional neutral stochastic integro-differential
systems [8]. Most recently, Krim et al. [24] examined implicit CFDEs, estab-
lishing existence results using a specific contraction mapping in b-metric spaces.
Despite these advancements, a comprehensive investigation into the existence,
uniqueness, and stability properties for neutral-type CFDEs with ID, particu-
larly for systems resembling model (2), remains absent in the current literature.
This gap highlights a potential area for further research.

Inspired by the aforementioned research [24, 1], this paper delves into the
existence and uniqueness of a novel class of nonlinear implicit neutral CFDEs.
The system under investigation is formulated as: (CFDDρ

0+ − ζ) [ω(7)−H(7, ω7, B1ω(7))] = 𭟋 (7, ω7, B1ω(7)) ,
7 ∈ I = [0, Z], ζ, Z > 0,
ω(7) = ξ(7), 7 ∈ (−∞, 0],

(2)

where 𭟋,H : I×W×R → R are given continuous functions with H(0, ω0, 0) = 0,
CFDDρ

0+ is the CFD of order ρ ∈ (0, 1), andW represents a space with properties
relevant to the system, which will be formally introduced as the phase space later.

The term B1 is defined as:

B1ω(7) =

∫
7

0

G(7, σ)ω(σ)dσ,

where G ∈ C (D,R+) denotes the set of all positive functions that are continuous
on D =

{
(7, σ) ∈ R2 : 0 ≤ σ ≤ 7 < Z

}
. Additionally, it is given that B∗

1 =

sup
7∈[0,Z]

∫
7

0

G(7, σ)dσ <∞.

For any 7 ∈ I, we define ω7 ∈ W by

ω7(θ) = ω(7+ θ), for θ ∈ (−∞, 0].

Our work is meticulously organized to present the concepts and results in
a logical sequence. Section 2 lays the groundwork by introducing the notation
and revisiting foundational concepts from fractional calculus. Additionally, rel-
evant auxiliary results are presented in this section to equip the reader for the
subsequent analysis. Section 3 constitutes the core of the paper: existence and
uniqueness results for problem (2) under Banach contraction principle. Finally,
Section 4 presents an illustrative academic example to showcase the significance
of our main findings.
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2. Preliminaries

To lay the groundwork for subsequent analysis, this section establishes key
notions, definitions, and preliminary results that will be employed throughout
this work.

Let C(I,R) represent the set of all real continuous functions, and let L1(I,R)
denote the space of all locally Lebesgue integrable real functions. We also con-
sider Cρ1−β(I,R), the Banach space of all continuous functions ω : I → R such

that lim
7→0

ω(7) exists with the norm ∥ω∥Cρ
1−β

= max{|ω(7)| : 7 ∈ I}.
Consider the space

Θ = {ω : (−∞, Z] → R, ω|(−∞,Z] ∈ W, ω|I ∈ Cρ1−β(I,R)},

where ω|I is the restriction of ω to [0, Z].

Definition 2.1. [22] The CFD of a function f : [0,∞) → R of order 0 < ρ ≤ 1
is defined by

Dρf(7) = lim
ε→0

f
(
7+ ε71−ρ

)
− f(7)

ε
,

provided the limit exists.
In the case where 7 = 0, we modify the definition as follows:

CFDDρf(0) = lim
7−→0+

CFDDρf(7).

Theorem 2.2. [22] Let ρ ∈ (0, 1] and f1, f2 be ρ-differentiable at a point 7 > 0.
As a result, we have

(i) CFDDρ(f1f2) = f1
CFDDρ(f2) + f2

CFDDρ(f1).

(ii) CFDDρf(7) = 7
1−ρDf(7), where f is differentiable and D =

d

d7
.

Definition 2.3. [2] Let ρ ∈ (0, 1]. The CF integral starting from a point d of a
function f : [0,∞) → R of order ρ is described as

Iρ(f)(7) =

∫
7

0

σρ−1f(σ)dσ.

Theorem 2.4. [22] If f(·) is a continuous function in the domain of Iρ(·), then
for all 7 > 0, we have

CFDDρ(Iρf(7)) = f(7).

Proposition 2.5. [22] If f(·) is a differentiable function, then for all 7 > 0, we
have

Iρ
(CFDDρf(·)

)
= f(7)− f(0).

Now, we construct the phase space axioms. Let (W, ∥ · ∥W) be a seminormed
linear space consisting of functions mapping (−∞, 0] into R and satisfy the
subsequent axioms, which are derived from the original formulations by Hale
and Kato [15].
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(B1) If ω : (−∞, 0] → R, and ω0 ∈ W, then there exist constants η1, η2, η3 > 0
such that for each 7 ∈ I, the following hold:
(a) ω7 ∈ W,
(b) ∥ω7∥W ≤ η1∥ω0∥W + η2 sup

ψ∈[0,7]

|ω(ψ)|,

(c) ∥ω(7)∥ ≤ η3∥ω7∥W .
(B2) For the function ω(·) as described in (B1), ω7 is continuous on I and

maps into the space W.
(B3) The space W possesses the property of completeness.

Definition 2.6. A function ω ∈ Θ constitutes a solution to the system (2) if
and only if it adheres to the subsequent integral equation:

ω(7) = H (7, ω7, B1ω(7)) + eζ
7
ρ

ρ ξ(0)

+ eζ
7
ρ

ρ

∫
7

0

σρ−1e−ζ
σρ

ρ 𭟋 (σ, ωσ, B1ω(σ)) dσ, 7 ∈ I. (3)

3. Main results

This section utilizes the Banach contraction principle to establish the exis-
tence and uniqueness of a solution for the system defined by equation (2) on the
interval (−∞, Z]. We begin by presenting the following assumptions, which will
be crucial for deriving the main results:

(HF) The function 𭟋 : I × W × R → R is continuous and ∃ M𭟋,M̃𭟋 > 0
such that

|𭟋(7, ξ, v)−𭟋(7, ξ, v)| ≤ M𭟋∥ξ − ξ∥W + M̃𭟋|v − v|

for each 7 ∈ I, ξ, ξ ∈ W, v, v ∈ R.
(HH) The function H : I × W × R → R is continuous and ∃ MH,M̃H > 0

such that

|H(7, ξ, v)−H(7, ξ, v)| ≤ MH∥ξ − ξ∥W + M̃H|v − v|

for each 7 ∈ I, ξ, ξ ∈ W, v, v ∈ R.

Theorem 3.1. Suppose 𭟋 and H are satisfy the conditions (HF) and (HH)
respectively. If

Λ1 =

{(
MH +

M𭟋

ζ

(
eζ

Zρ

ρ − 1
))

η2

+

(
M̃H +

M̃𭟋

ζ

(
eζ

Zρ

ρ − 1
))

B∗
1

}
< 1, (4)

then the system (2) has a unique solution on (−∞, Z].
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Proof. Define the operator Υ : Θ → Θ by

(Υω)(7) =


H (7, ω7, B1ω(7)) + eζ

7
ρ

ρ ξ(0)

+eζ
7
ρ

ρ

∫
7

0

σρ−1e−ζ
σρ

ρ 𭟋 (σ, ωσ, B1ω(σ)) dσ, 7 ∈ I,

ξ(7), (−∞, 0].

We consider the function ω1 : (−∞, Z] → R defined by

ω1(7) =

{
0, if 7 ∈ I

ξ(7), if 7 ∈ (−∞, 0].

Then ω10 = ξ. For each ω2 ∈ C(I,R), with ω2(0) = 0, we denote by ω2 the
function described by

ω2(7) =

{
ω2(7), if 7 ∈ I
0, if 7 ∈ (−∞, 0].

If ω(·) fulfills (3), we can express ω(7) as ω(7) = ω1(7) + ω2(7) for 7 ∈ I,
indicating that ω7 = ω17 + ω27 for every 7 ∈ I. Furthermore, the function ω2(·)
meets

ω2(7) = H(7, ω17 + ω27, B1(ω1(7) + ω2(7))) + eζ
7
ρ

ρ ξ(0)

+ eζ
7
ρ

ρ

∫
7

0

σρ−1e−ζ
σρ

ρ 𭟋 (σ, ω1σ + ω2σ, B1(ω1(σ) + ω2(σ))) dσ, 7 ∈ I.

(5)

Setting

Θ̃ = {ω2 ∈ Θ : ω20 = 0}
and let ∥ · ∥Θ̃ be the norm in Θ̃ defined by

∥ω2∥Θ̃ = ∥ω20∥W + sup
7∈I

|ω2(7)| = sup
7∈I

|ω2(7)|, ω2 ∈ Θ̃,

then (Θ̃, ∥ · ∥Θ̃) is a Banach space. Define the operator Υ1 : Θ̃ → Θ̃ by

(Υ1ω2)(7) = H(7, ω17 + ω27, B1(ω1(7) + ω2(7))) + eζ
7
ρ

ρ ξ(0)

+ eζ
7
ρ

ρ

∫
7

0

σρ−1e−ζ
σρ

ρ 𭟋 (σ, ω1σ + ω2σ, B1(ω1(σ) + ω2(σ))) dσ, 7 ∈ I.

Thus, having a fixed point for the operator Υ is equivalent to having a fixed
point for Υ1. We now focus on proving the existence of a fixed point for Υ1.

Note 3.2. From the phase space axioms (B1) and conditions (HF)-(HH), we

have the following estimations: For any ω2, ω
∗
2 ∈ Θ̃ and for all 7 ∈ I, we have

|H(7, ω17 + ω27, B1(ω1(7) + ω2(7)))−H(7, ω17 + ω∗
27, B1(ω1(7) + ω∗

2(7)))|

≤ MH∥ω27 − ω∗
27∥W + M̃HB1|ω2(7)− ω∗

2(7)|. (6)
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Since

∥ω27 − ω∗
27∥W ≤ η1∥ω20 − ω∗

20∥W + η2 sup
0≤ψ≤7

|ω2(ψ)− ω∗
2(ψ)|

≤ η1(0) + η2∥ω2 − ω∗
2∥Θ̃

≤ η2∥ω2 − ω∗
2∥Θ̃.

Thus (6) becomes

|H(7, ω17 + ω27, B1(ω1(7) + ω2(7)))−H(7, ω17 + ω∗
27, B1(ω1(7) + ω∗

2(7)))|

≤ (MHη2 + M̃HB
∗
1)∥ω2 − ω∗

2∥Θ̃. (7)

In the similar manner

|𭟋(7, ω17 + ω27, B1(ω1(7) + ω2(7)))−𭟋(7, ω17 + ω∗
27, B1(ω1(7) + ω∗

2(7)))|

≤ (M𭟋η2 + M̃𭟋B
∗
1)∥ω2 − ω∗

2∥Θ̃. (8)

Let ω2, ω
∗
2 ∈ Θ̃. Then, for every 7 ∈ I, the following holds:

|(Υ1ω2)(7)− (Υ1ω
∗
2)(7)|

≤ (MHη2 + M̃HB
∗
1)∥ω2 − ω∗

2∥Θ̃

+ (M𭟋η2 + M̃𭟋B
∗
1)∥ω2 − ω∗

2∥Θ̃e
ζ 7

ρ

ρ

∫
7

0

σρ−1e−ζ
σρ

ρ dσ

≤ (MHη2 + M̃HB
∗
1)∥ω2 − ω∗

2∥Θ̃

+ (M𭟋η2 + M̃𭟋B
∗
1)∥ω2 − ω∗

2∥Θ̃ · 1
ζ

(
eζ

Zρ

ρ − 1
)

≤

{(
MH +

M𭟋

ζ

(
eζ

Zρ

ρ − 1
))

η2

+

(
M̃H +

M̃𭟋

ζ

(
eζ

Zρ

ρ − 1
))

B∗
1

}
∥ω2 − ω∗

2∥Θ̃.

By virtue of condition (4), the operator Υ satisfies the conditions of the
Banach contraction principle [14]. This guarantees the existence of a unique
fixed point which is the unique solution of [5] on I. Define ω(7) = ω1(7)+ω2(7).
Then, ω(7) represents the unique solution to the structure (2) on (−∞, Z]. □

4. Example

For the sake of clarity, we showcase the aforementioned results through a
practical example in this section.

Let β ∈ R+. We define a Banach space Wβ of functions on the interval
(−∞, 0] as follows:

Wβ = {ω ∈ C(−∞, 0],R) : lim
7→−∞

eβ7ω(7) exists in R}.
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The norm on Wβ is defined as:

∥ω∥β = sup
−∞<7≤0

{
eβ7|ω(7)|

}
.

This space satisfies all the phase space axioms. Consider the subsequent
conformable fractional neutral infinite delay system

(CFDDρ
0+ − ζ

) [
ω(7)−

{
e−7−7β ∥ω7∥
9 (e7 + e−7)

+
e−7

16 (e7 + e−7)
sin

(∣∣∣∣∫ 7

0

(7− σ)ω(σ)dσ

∣∣∣∣)
}]

=
e−7β |ω7|

(25 + e−7) (1 + ∥ω7∥)

+
e−7

16 (e7 + e−7)
sin

(∣∣∣∣∫ 7

0

(7− σ)ω(σ)dσ

∣∣∣∣) , 7 ∈ I = (0, 1],

ω(7) = ξ(7), 7 ∈ (−∞, 0].
(9)

We define the functions as follows:

𭟋(7, u, v) =
e−7βu

(25 + e−7) (1 + u)
+

e−7

16 (e7 + e−7)
sin(|B1v|), 7 ∈ I

and

H(7, u, v) =
e−7−7βu

9 (e7 + e−7)
+

e−7

16 (e7 + e−7)
sin(|B1v|), 7 ∈ I,

where B1v =

∫
7

0

(7− σ)vdσ. Here B∗
1 = sup

7∈[0,1]

∫
7

0

(7− σ)dσ =
1

2
<∞.

For any u, v, u∗, v∗ from Wβ and 7 ∈ I, we obtain

|𭟋(7, u, v)−𭟋 (7, u∗, v∗)| ≤ e−7β

25 + e−7

∣∣∣∣ u

1 + u
− u∗

1 + u∗

∣∣∣∣
+

e−7

16 (e7 + e−7)
|B1v −B1v

∗|

=
e−7−7β

25e7 + 1

∣∣∣∣ u− u∗

(1 + u) (1 + u∗)

∣∣∣∣+ B∗
1

16 (e27 + 1)
|v − v∗|

≤ e−7

25
e−7β |u− u∗|+ B∗

1

16
|v − v∗|

≤ 1

25
∥u− u∗∥β +

1

16
·B∗

1 |v − v∗|

|H(7, u, v)−H (7, u∗, v∗)| ≤ e−7−7β

9 (e7 + e−7)
|u− u∗|+ e−7

16 (e7 + e−7)
|B1v −B1v

∗|

≤ 1

9 (e27 + 1)
∥u− u∗∥β +

B∗
1

16 (e27 + 1)
|v − v∗|

≤ 1

9
∥u− u∗∥β +

1

16
·B∗

1 |v − v∗|.
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Therefore the conditions (HF) and (HH) are satisfied with M𭟋 =
1

25
,M̃𭟋 =

M̃H =
1

16
and MH =

1

9
. It can be observed that (4) is satisfied by considering

η2 = ζ = Z = 1 and ρ =
1

2
. Moreover

Λ1 =

{(
MH +

M𭟋

ζ

(
eζ

Zρ

ρ − 1
))

η2

+

(
M̃H +

M̃𭟋

ζ

(
eζ

Zρ

ρ − 1
))

B∗
1

}
≈ 0.598 < 1.

Thus by Theorem 3.1, the system (9) has a unique solution on (−∞, 1].

5. Conclusion

In this study, we applied the Banach contraction principle to establish the
necessary conditions for the existence and uniqueness of solutions for a nonlinear
weighted NFDS. A compelling example was provided to validate the results,
which are pioneering for fractional differential equations (FDEs) incorporating
the conformable fractional derivative (CFD). By leveraging a suitable fixed-
point theorem to prove existence, controllability, and stability in models with
non-instantaneous impulses, there is significant potential to advance the efficacy
of ongoing and future research in this area.

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable

References

1. S. Abbas and M. Benchohra, Conformable fractional differential equations in b-metric

spaces, Ann. Acad. Rom. Sci.: Ser. Math. Appl. 14 (2022), 58-76.
2. T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015),

57-66.

3. I. Ahmed, J.J. Nieto, G.U. Rahman, and K. Shah, Existence and stability for fractional
order pantograph equations with nonlocal conditions, Electr. j. differ. 132 (2020), 1-16.

4. D. Baleanu, J.A.T. Machado, and A.C.J. Luo, Fractional Dynamics and Control, Springer,

New York, USA, 2012.
5. B. Bayour, D.F.M. Torres, Existence of solution to a local fractional nonlinear differential

equation, J. Comput. Appl. Math. 312 (2017), 127-133.

6. M. Benchohra, J. Henderson, and S.K. Ntouyas, Impulsive Differential Equations and In-
clusions, Hindawi Publicating Corporation, New York, 2006.

7. M. Bouaouid, M. Atraoui, K. Hilal, and S. Melliani, Fractional differential equations with
nonlocal-delay condition, J. Adv. Math. Stud. 11 (2018), 214-225.

8. D. Chalishajar and K. Ramkumar and K. Ravikumar and A. Anguraj and S. Jain, Optimal

control of conformable fractional neutral stochastic integrodifferential systems with infinite
delay, Results Control Optim. 13 (2023), 100293.



1398 B. Sripathy, S.V. Subrahmanyam, L. Swetha, V. Kavitha, M. Mallika Arjunan

9. M. Derhab, On a conformable fractional differential equations with maxima, Malaya J.

Mat. 12 (2024), 85-103.
10. R. Devi and D.N. Pandey, Approximation of solution for generalized Basset equation with

finite delay using Rothe’s approach, Malaya J. Mat. 11 (2023), 25-42.

11. T.N. Dinh, S. Kamal and R.K. Pandey, Fractional-Order System: Control Theory and
Applications, Fractal fract. 7 (2023), 48.

12. A.M.A. El-Sayed, Fractional order wave equation, Int. J. Theor. Phys. 35 (1996), 311-322.

13. M. Etefa, G.M.N. Guerekata, P. Ngnepieba, O.S. Iyiola, On a generalized fractional dif-
ferential Cauchy problem, Malaya J. Mat. 11 (2023), 80-93.

14. A. Granas and J. Dugundji, Fixed Point Theory, Springer–Verlag, New York, 2003.

15. J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkc. Ekvac.
21 (1978), 11-41.

16. M. Hannabou, K. Hilal, and A. Kajouni, Existence and uniqueness of mild solutions to
impulsive nonlocal Cauchy problems, J. Math. 2020 (2020), Article ID 5729128, 9 pages.

17. F. Hartung, T. Krisztin, H.-O. Walther, and J. Wu, Functional Differential Equations with

State-dependent Delays: Theory and Applications, In: Canada, A., Drabek, P., Fonda, A.
(eds.) Handbook of differential equations: ordinary differential equations, pp. 435–545,

Elsevier, Amsterdam, 2006.

18. J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in
porousmedia, Comput. Methods Appl. Mech. Eng. 167 (1998), 57-68.

19. J.H. He, Some applications of nonlinear fractional differential equations and their approx-

imations, Bull. Sci. Technol. Soc. 15 (1999), 86-90.
20. K. Hilal, A. Kajouni and N. Chefnaj, Existence of solution for a conformable fractional

Cauchy problem with non-local condition, Int. J. Differ. Equ. 2022 (2022), Article ID

6468278, 9 pages.
21. A. Jawahdou, Existence of mild solutions of second-order impulsive differential equations

in Banach spaces, Malaya J. Mat. 11 (2023), 117-126.

22. R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, A new definition of fractional
derivative, J. Comput. Appl. Math. 264 (2014), 65-70.

23. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.

24. S. Krim, A. Salim, S. Abbas and M. Benchohra, On implicit impulsive conformable

fractional differential equations with infinite delay in b-metric spaces, Rend. Circ. Mat.
Palermo. 2 (2023), 2579-2592.

25. V. Lakshmikantham, D.D. Bainov, and P.S. Simeonov, Theory of Impulsive Differential

Equations, Worlds Scientific, Singapore, 1989.
26. R. Li, W. Jiang, J. Sheng, S. Wang, On the nonlinear neutral conformable fractional

integral-differential equation, J. Appl. Math. 11 (2020), 1041-1051.

27. R. Metzler, W.G. Glockle, Theo F. Nonnenmacher, Fractional model equation for anoma-
lous diffusion, Physics A 211 (1994), 13-24.

28. F.C. Meral, T.J. Royston and R. Magin, Fractional calculus in viscoelasticity: An experi-

mental study, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 939-945.
29. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

30. J. Wang, C. Bai, Antiperiodic boundary value problems for impulsive fractional functional
differential equations via conformable derivative, J. Funct. Spaces 2018 (2018), Art. ID

7643123, 11 pages.

31. G. Xiao, J. Wang and D. O’Regan, Existence and stability of solutions to neutral con-
formable stochastic functional differential equations, Qual. Theory Dyn. Syst. 21 (2022),

1-22.

32. W. Zhong and L. Wang, Basic theory of initial value problems of conformable fractional
differential equations, Adv. Differ. Equ. 321 (2018), 14 pages.



Results of conformable fractional weighted neutral differential equations 1399

Sripathy Budhi received M.Sc. and Ph.D. from Anna University in 2004 and 2016 re-

spectively. Since 2022 he has been at VIT. His research interests include Wavelets analysis,
fractional systems and wireless sensor networks.

Department of Mathematics, School of Advanced sciences, Vellore institute of technology,

Vellore-632014, India.
e-mail: sripathy51180@gmail.com

Venkata Subrahmanyam Sajja received M.Sc. and Ph.D. from Acharya Nagarjuna Uni-
versity in 1998 and 2016 respectively. His research interests include fluid dynamics and

applied mathematics.

Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation,
Guntur-522302, India.

e-mail: subrahmanyam@kluniversity.in

Swetha Lanka received M.Sc. and Ph.D. from Andhra University and K L Deemed to be

University, in 2008 and 202014 respectively. Her research interests include fluid dynamics

and applied mathematics.

Department of Mathematics, Sir C. R. Reddy College of Engineering, Eluru-534007, India.

e-mail: swethadeepukommana@gmail.com

Kavitha Velusamy received M.Sc. and Ph.D. from Bharathiar and Karunya Deemed

University in 2003 and 2012 respectively. Since 2007 she has been at Karunya Deemed

University. His research interests include fractional dynamical systems and control theory.

Department of Mathematics, School of Sciences, Arts, Media & Management, Karunya

Institute of Technology and Sciences, Karunya Nagar, Coimbatore-641114, Tamil Nadu,
India.

e-mail: kavi velubagyam@yahoo.co.in

Mallika Arjunan Mani received M.Sc. and Ph.D. from Bharathiar University in 2003

and 2007 respectively. Since 2021 he has been at SASTRA University. His research interests

include fractional dynamical systems and control theory.

Department of Mathematics, School of Arts, Science, Humanities and Education, SASTRA

Deemed to be University, Thanjavur-613401, India.
e-mail: arjunphd07@yahoo.co.in


