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CANGUL STRESS INDEX FOR GRAPHS
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AND M. PAVITHRA

Abstract. We introduce a new topological index for graphs called Cangul
stress index using stresses of nodes. Also, we establish some inequalities,

prove some results and compute Cangul stress index for some standard
graphs. Further, a correlation analysis is carried to measure the strength

of the linear relationship between Cangul stress index of chemical structures

(molecular graphs) and physical properties of lower alkanes.
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1. Introduction

We refer to the textbook of Harary [5] for standard terminology and concepts
in graph theory. This article will provide non-standard information when needed.

LetG = (V,E) be a graph (finite, simple, connected and undirected). The dis-
tance between two nodes u and v in G, denoted by d(u, v) is the number of edges
in a shortest path (also called a graph geodesic) connecting them. We say that
a graph geodesic P is passing through a node v in G if v is an internal node of P .

The concept of stress of a node in a network (graph) has been introduced by
Shimbel as centrality measure in 1953 [24]. This centrality measure has appli-
cations in biology, sociology, psychology, etc., (See [7,22]). The stress of a node
v in a graph G, denoted by strG(v) or str(v), is the number of geodesics passing
through it. We denote the maximum stress among all the nodes of G by ΘG

and minimum stress among all the nodes of G by θG. Further, the concepts
of stress number of a graph and stress regular graphs have been studied by K.
Bhargava, N. N. Dattatreya, and R. Rajendra in their paper [1]. A graph G is
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k-stress regular if str(v) = k for all v ∈ V (G). We recommend that the reader
to study the publications [2,3,6,8,10–21,23,25,26] for novel stress/degree based
topological indices.

In this work, a finite simple connected graph is referred to as a graph, G
denotes a graph and N denotes the number of geodesics of length ≥ 2 in G.
In this paper, we introduce a novel topological index for graphs using stress on
nodes called Cangul Stress Index. Further, we establish some inequalities and
compute Cangul stress index for some standard graphs.

2. Cangul Stress Index

Definition 2.1. The Cangul stress index CS(G) of a graph G is defined as

CS(G) =
∑

uv∈E(G)

[str(u) + str(v)] str(u) str(v). (1)

Observation: From the Definition 2.1, it follows that, for any graph G,

2mθ3G ≤ CS(G) ≤ 2mΘ3
G,

where m is the number of edges in G.

Proposition 2.2. For a graph G,

0 ≤ CS(G) ≤ 2N3(|E| − t), (2)

where t is the number of edges with at least one end node of zero stress in G.

Proof. If N is the number of all geodesics of length ≥ 2 in a graph G, then by
the definition of stress of a node, for any node v in G, 0 ≤ str(v) ≤ N . Hence
by the Definition 2.1, the result follows. □

Corollary 2.3. If there is no geodesic of length ≥ 2 in a graph G, then CS(G) =
0. Moreover, for a complete graph Kn, CS(Kn) = 0.

Proof. If there is no geodesic of length ≥ 2 in a graph G, then N = 0. Hence,
by the Proposition 2.2, we have CS(G) = 0.
In Kn, there is no geodesic of length ≥ 2 and so CS(Kn) = 0. □

Theorem 2.4. For a graph G, CS(G) = 0 iff G is complete.

Proof. Suppose that CS(G) = 0. Then by the Definition 2.1,
[str(u) + str(v)] str(u) str(v) = 0, ∀uv ∈ E(G). Hence str(v) = 0, ∀v ∈ V (G). If
|V (G)| = 1 or 2, then G is a complete graph as G ∼= K1 or K2. Assume that
|V (G)| > 2. Let u, v be any two distinct nodes in G. We claim that u, v are
adjacent in G. For, if u, v are not adjacent in G, then there is a geodesic in G
between u and v passing through at least one node, say w making str(w) ≥ 1,
which a contradiction. Hence, u, v are adjacent in G. Therefore, G is complete.

Conversely, suppose that the graph G is complete. Then by Corollary 2.3, it
follows that CS(G) = 0. □
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Proposition 2.5. For the complete bipartite Km,n,

CS(Km,n) =
1

8
m2n2(m− 1)(n− 1) [n(n− 1) +m(m− 1)] .

Proof. Let V1 = {v1, . . . , vm} and V2 = {u1, . . . , un} be the partite sets of Km,n.
We have,

str(vi) =
n(n− 1)

2
for 1 ≤ i ≤ m (3)

and

str(uj) =
m(m− 1)

2
for 1 ≤ j ≤ n. (4)

Using (3) and (4) in the Definition 2.1, we have

CS(Km,n) =
∑

uv∈E(G)

[str(u) + str(v)] str(u) str(v)

=
∑

1≤i≤m, 1≤j≤n

[str(vi) + str(uj)] str(vi)str(uj)

=
∑

1≤i≤m, 1≤j≤n

[
n(n− 1)

2
+

m(m− 1)

2

]
n(n− 1)

2
· m(m− 1)

2

=
1

8
m2n2(m− 1)(n− 1) [n(n− 1) +m(m− 1)] .

□

Proposition 2.6. If G = (V,E) is a k-stress regular graph, then

CS(G) = 2k3|E|.

Proof. Suppose that G is a k-stress regular graph. Then
str(v) = k for all v ∈ V (G).

By the Definition 2.1, we have

CS(G) =
∑

uv∈E(G)

[str(u) + str(v)] str(u) str(v)

=
∑

uv∈E(G)

[k + k]k · k

= 2k3|E|. □

Corollary 2.7. For a cycle Cn,

CS(Cn) =


n(n− 1)3(n− 3)3

256
, if n is odd

n4(n− 2)3

256
, if n is even.
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Proof. For any node v in Cn, we have,

str(v) =


(n− 1)(n− 3)

8
, if n is odd

n(n− 2)

8
, if n is even.

Hence Cn is 
(n− 1)(n− 3)

8
-stress regular, if n is odd

n(n− 2)

8
-stress regular, if n is even.

Since Cn has n nodes and n edges, by the Proposition 2.6, we have

CS(Cn) = 2n×


[
(n− 1)(n− 3)

8

]3
, if n is odd[

n(n− 2)

8

]3
, if n is even.

=


n(n− 1)3(n− 3)3

256
, if n is odd

n4(n− 2)3

256
, if n is even.

□

Proposition 2.8. Let T be a tree on n nodes. Then

CS(T ) =
∑
uv∈J

 ∑
1≤i<j≤m(u)

|Cu
i ||Cu

j |+
∑

1≤i<j≤m(v)

|Cv
i ||Cv

j |

 ∑
1≤i<j≤m(u)

|Cu
i ||Cu

j |

 ∑
1≤i<j≤m(v)

|Cv
i ||Cv

j |

 ,

where J is the set of internal(non-pendant) edges in T , Q denotes the set of all
nodes adjacent to pendent nodes in T , and the sets Cv

1 , . . . , C
v
m denotes the node

sets of the components of T − v for an internal node v of degree m = m(v).

Proof. We know that a pendant node in T has zero stress. Let v be an internal
node of T of degree m = m(v). Let Cv

1 , . . . , C
v
m be the components of T − v.

Since there is only one path between any two nodes in a tree, it follows that,

str(v) =
∑

1≤i<j≤m

|Cv
i ||Cv

j |. (5)
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Let J denotes the set of internal(non-pendant) edges, and P denotes pendant
edges in T . Then using (5) in the Definition 2.1, we have

CS(T ) =
∑
uv∈J

[{str(u) + str(v)} str(u) str(v)] +
∑
uv∈P

[{str(u) + str(v)} str(u) str(v)]

=
∑
uv∈J

[str(u) + str(v)] str(u) str(v)

=
∑
uv∈J

 ∑
1≤i<j≤m(u)

|Cu
i ||Cu

j |+
∑

1≤i<j≤m(v)

|Cv
i ||Cv

j |

 ∑
1≤i<j≤m(u)

|Cu
i ||Cu

j |

 ∑
1≤i<j≤m(v)

|Cv
i ||Cv

j |

 .

□

Corollary 2.9. For the path Pn on n nodes

CS(Pn) =

n−1∑
i=1

[i(n− i− 1)(i− 1)2(n− i)2 + i2(n− i− 1)2(i− 1)(n− i)].

Proof. The proof of this corollary follows by above Proposition 2.8. We follow
the proof of the Proposition 2.8 to compute the index. Let Pn be the path with
node sequence v1, v2, . . . , vn (shown in Figure 1).

u u u u u u. . . . .
v1 v2 v3 v4 vn−1 vn

Pn

Figure 1. The path Pn on n nodes.

We have,

str(vi) = (i− 1)(n− i), 1 ≤ i ≤ n.

Then

CS(Pn) =
∑

uv∈E(Pn)

[str(u) + str(v)] str(u) str(v)

=

n−1∑
i=1

[str(vi) + str(vi+1)] str(vi) str(vi+1)

=

n−1∑
i=1

[(i− 1)(n− i) + (i)(n− i− 1)](i− 1)(n− i)(i)(n− i− 1)
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=

n−1∑
i=1

[i(n− i− 1)(i− 1)2(n− i)2 + i2(n− i− 1)2(i− 1)(n− i)].

□

Proposition 2.10. Let Wd(n,m) denotes the windmill graph constructed for
n ≥ 2 and m ≥ 2 by joining m copies of the complete graph Kn at a shared
universal node v. Then

CS(Wd(n,m)) = 0.

Hence, for the friendship graph Fk on 2k + 1 nodes,

CS(Fk) = 0.

Proof. Clearly the stress of any node other than universal node is zero inWd(n,m),
because neighbors of that node induces a complete subgraph ofWd(n,m). Hence
by the Definition 2.1, we have

CS(Wd(n,m)) = 0.

Since the friendship graph Fk on 2k + 1 nodes is nothing but Wd(3, k), it
follows that CS(Fk) = 0.

□

3. A Correlation Analysis

In this section, a correlation analysis is carried to measure the strength of the
linear relationship between Cangul stress index of chemical structures (molecu-
lar graphs) and physical properties of lower alkanes.

The experimental values for the physical properties-Boiling points (bp) ◦C,
molar volumes (mv) cm3, molar refractions (mr) cm3, heats of vaporization
(hv) kJ , critical temperatures (ct) ◦C, critical pressures (cp) atm, and surface
tensions(st) dyne cm−1 of considered alkanes are given in Table 1 along with the
Cangul stress index of chemical structures (molecular graphs). The numerical
values in columns 3 to 9 of the Table 1 are obtained from [27] (the same can be
referred in [9]).

Table 1. Cangul stress index and values of the physical
properties of considered low alkanes

Alkane CS bp
◦C

mv
cm3

mr
cm3

hv
kJ

ct
◦C

cp
atm

st

dyne cm−1

Pentane 168 36.1 115.2 25.27 26.4 196.6 33.3 16
2-Methylbutane 120 27.9 116.4 25.29 24.6 187.8 32.9 15
2,2-Dimethylpropane 0 9.5 122.1 25.72 21.8 160.6 31.6
Hexane 912 68.7 130.7 29.91 31.6 234.7 29.9 18.42
2-Methylpentane 786 60.3 131.9 29.95 29.9 224.9 30 17.38
3-Methylpentane 768 63.3 129.7 29.8 30.3 231.2 30.8 18.12
2,2-Dimethylbutane 468 49.7 132.7 29.93 27.7 216.2 30.7 16.3
2,3-Dimethylbutane 686 58 130.2 29.81 29.1 227.1 31 17.37
Heptane 3488 98.4 146.5 34.55 36.6 267 27 20.26
2-Methylhexane 3202 90.1 147.7 34.59 34.8 257.9 27.2 19.29



Cangul Stress Index for Graphs 1385

3-Methylhexane 3072 91.9 145.8 34.46 35.1 262.4 28.1 19.79
3-Ethylpentane 3060 93.5 143.5 34.28 35.2 267.6 28.6 20.44
2,2-Dimethylpentane 2440 79.2 148.7 34.62 32.4 247.7 28.4 18.02
2,3-Dimethylpentane 2860 89.8 144.2 34.32 34.2 264.6 29.2 19.96
2,4-Dimethylpentane 2916 80.5 148.9 34.62 32.9 247.1 27.4 18.15
3,3-Dimethylpentane 2340 86.1 144.5 34.33 33 263 30 19.59
2,3,3-Trimethylbutane 2268 80.9 145.2 34.37 32 258.3 29.8 18.76
Octane 10656 125.7 162.6 39.19 41.5 296.2 24.64 21.76
2-Methylheptane 10092 117.6 163.7 39.23 39.7 288 24.8 20.6
3-Methylheptane 9648 118.9 161.8 39.1 39.8 292 25.6 21.17
4-Methylheptane 9420 117.7 162.1 39.12 39.7 290 25.6 21
3-Ethylhexane 7232 118.5 160.1 38.94 39.4 292 25.74 21.51
2,2-Dimethylhexane 8460 106.8 164.3 39.25 37.3 279 25.6 19.6
2,3-Dimethylhexane 9000 115.6 160.4 38.98 38.8 293 26.6 20.99
2,4-Dimethylhexane 7356 109.4 163.1 39.13 37.8 282 25.8 20.05
2,5-Dimethylhexane 9528 109.1 164.7 39.26 37.9 279 25 19.73
3,3-Dimethylhexane 7896 112 160.9 39.01 37.9 290.8 27.2 20.63
3,4-Dimethylhexane 8848 117.7 158.8 38.85 39 298 27.4 21.62
3-Ethyl-2-methylpentane 8976 115.7 158.8 38.84 38.5 295 27.4 21.52
3-Ethyl-3-methylpentane 8856 118.3 157 38.72 38 305 28.9 21.99
2,2,3-Trimethylpentane 5412 109.8 159.5 38.92 36.9 294 28.2 20.67
2,2,4-Trimethylpentane 7896 99.2 165.1 39.26 36.1 271.2 25.5 18.77
2,3,3-Trimethylpentane 7194 114.8 157.3 38.76 37.2 303 29 21.56
2,3,4-Trimethylpentane 8580 113.5 158.9 38.87 37.6 295 27.6 21.14
Nonane 27792 150.8 178.7 43.84 46.4 322 22.74 22.92
2-Methyloctane 26796 143.3 179.8 43.88 44.7 315 23.6 21.88
3-Methyloctane 25728 144.2 178 43.73 44.8 318 23.7 22.34
4-Methyloctane 24810 142.5 178.2 43.77 44.8 318.3 23.06 22.34
3-Ethylheptane 24516 143 176.4 43.64 44.8 318 23.98 22.81
4-Ethylheptane 14924 141.2 175.7 43.49 44.8 318.3 23.98 22.81
2,2-Dimethylheptane 23688 132.7 180.5 43.91 42.3 302 22.8 20.8
2,3-Dimethylheptane 24050 140.5 176.7 43.63 43.8 315 23.79 22.34
2,4-Dimethylheptane 24732 133.5 179.1 43.74 42.9 306 22.7 21.3
2,5-Dimethylheptane 24732 136 179.4 43.85 42.9 307.8 22.7 21.3
2,6-Dimethylheptane 25800 135.2 180.9 43.93 42.8 306 23.7 20.83
3,3-Dimethylheptane 21912 137.3 176.9 43.69 42.7 314 24.19 22.01
3,4-Dimethylheptane 23148 140.6 175.3 43.55 43.8 322.7 24.77 22.8
3,5-Dimethylheptane 23664 136 177.4 43.64 43 312.3 23.59 21.77
4,4-Dimethylheptane 21144 135.2 176.9 43.6 42.7 317.8 24.18 22.01
3-Ethyl-2-methylhexane 23310 138 175.4 43.66 43.8 322.7 24.77 22.8
4-Ethyl-2-methylhexane 23520 133.8 177.4 43.65 43 330.3 25.56 21.77
3-Ethyl-3-methylhexane 20916 140.6 173.1 43.27 43 327.2 25.66 23.22
3-Ethyl-4-methylhexane 22996 140.46 172.8 43.37 44 312.3 23.59 23.27
2,2,3-Trimethylhexane 21318 133.6 175.9 43.62 41.9 318.1 25.07 21.86
2,2,4-Trimethylhexane 21624 126.5 179.2 43.76 40.6 301 23.39 20.51
2,2,5-Trimethylhexane 22692 124.1 181.3 43.94 40.2 296.6 22.41 20.04
2,3,3-Trimethylhexane 20582 137.7 173.8 43.43 42.2 326.1 25.56 22.41
2,3,4-Trimethylhexane 22388 139 173.5 43.39 42.9 324.2 25.46 22.8
2,3,5-Trimethylpentane 23054 131.3 177.7 43.65 41.4 309.4 23.49 21.27
2,4,4-Trimethylhexane 20916 130.6 177.2 43.66 40.8 309.1 23.79 21.17
3,3,4-Trimethylhexane 20538 140.5 172.1 43.34 42.3 330.6 26.45 23.27
3,3-Diethylpentane 20832 146.2 170.2 43.11 43.4 342.8 26.94 23.75
2,2-Dimethyl-3-ethylpentane 11480 133.8 174.5 43.46 42 338.6 25.96 22.38
2,3-Dimethyl-3-ethylpentane 21240 142 170.1 42.95 42.6 322.6 26.94 23.87
2,4-Dimethyl-3-ethylpentane 22680 136.7 173.8 43.4 42.9 324.2 25.46 22.8
2,2,3,3-Tetramethylpentane 18850 140.3 169.5 43.21 41 334.5 27.04 23.38
2,2,3,4-Tetramethylpentane 14370 133 173.6 43.44 41 319.6 25.66 21.98
2,2,4,4-Tetramethylpentane 19584 122.3 178.3 43.87 38.1 301.6 24.58 20.37
2,3,3,4-Tetramethylpentane 20020 141.6 169.9 43.2 41.8 334.5 26.85 23.31

The correlation coefficient (r) and the coefficient of determination (r2) are
computed to measure the strength of the linear relationship between Cangul
stress index of chemical structures (molecular graphs) and physical properties of



1386 P. Somashekar, P.S.K. Reddy, C.N. Harshavardhana and M. Pavithra

lower alkanes using the Table 1. The computed values of r and r2 are presented
in Table 2.

Table 2. r and r2 for the physical properties (P ) and Cangul
stress index

P r r2

bp 0.8571 0.7346

mv 0.8998 0.8097

mr 0.8946 0.8004
hv 0.8778 0.7705

ct 0.8096 0.6554

cp −0.8401 0.7058
st 0.7504 0.5630

From Table 2, it follows that there is a very strong positive correlation between
Cangul stress index and the physical properties-boiling points, molar volumes,
molar refractions, heats of vaporization, critical temperatures and surface ten-
sions of low alkanes. There is a very strong negative correlation between Cangul
stress index and critical pressures of low alkanes. Hence Cangul stress index can
be used as a predictive measure for physical properties of low alkanes.

4. Conclusion

In this paper, a novel topological index for graphs has been introduced,
namely, Cangul stress index. Further, we established some inequalities, proved
some results and computed the Cangul stress index for some standard graphs.
Cangul stress index can be used as a predictive measure for physical properties
of low alkanes. It will be interesting to explore further properties of the Cangul
stress index.
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