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NEW SUBCLASSES OF BI-UNIVALENT FUNCTIONS

WITH RESPECT TO THE q-SYMMETRIC POINTS DEFINED

BY BERNOULLI POLYNOMIALS†

SARITHA G.P.

Abstract. The objective of this paper is to introduce and investigate new
subclass of bi-univalent functions with respect to the symmetric points in

U = {z ∈ C : |z| < 1} using Bernoulli polynomials. For functions belonging

to this class, we obtain upper bounds for Taylor-Maclaurin coefficients |a2|,
|a3| and Fekete-Szegö inequalities |a3 − µa22| for these new subclasses.
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1.Introduction, definitions and preliminaries

Let A denote the class of all functions f(z) of the form:

f(z) = z +

∞∑
n=2

anz
n, (1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}. If a
function f is one-to-one in D, then it is called univalent in D.
Let S be the subclass of A consisting of all univalent functions in U.
The inverse functions in the class S may not be defined on the entire unit disc
U although the functions in the class S are invertible. However using Koebe-one
quarter theorem [10] it is obvious that the image of U under every function f ∈ S
contains a disc of radius 1

4 . Hence every univalent function f has an inverse f−1

defined by

f−1(f(z)) = z, (z ∈ U),
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and

f(f−1(w)) = w

(
|w| < r0(f) : r0(f) ≥

1

4

)
,

where

g(w) = f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · ·. (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U.
The expression

∑
as a non empty class of functions, as it contains at least the

functions

f1(z) = − z

1− z′
, f2(z) =

1

2
log

1 + z

1− z′

with their corresponding inverses

f−1
1 (ω) =

ω

1 + ω′ , f
−1
2 (ω) =

e2ω − 1

e2ω + 1
.

In addition, the Koebe function f(z) = z
(1−z)2 /∈

∑
.

The study of analytical and bi-univalent functions is reintroduced in the publi-
cation of [29] and is then followed by work such as [5, 6, 13, 18, 19, 25]. The initial
coefficient constraints have been determined by several authors who have pre-
sented new subclasses of bi-univalent functions [5, 6, 8, 26, 29, 30].
Let α and β be two analytic functions in U. Then we say that α is subordinate
to β, if a Schwarz function ω exists that is analytic in U with ω(0) = 0 and
|ω(z)| < 1, (z ∈ U) such that

α(z) = β(ω(z)), (z ∈ U).

This subordination is denoted by α ≺ β. Given that β is a univalent function in
U, then

α(z) ≺ β(z) ⇐⇒ α(0) = β(0) and α(U) ⊂ β(U).
By Loewner’s technique, the Fekete-Szegö problem for the coefficients of f ∈ S
in [18] is ∣∣a3 − µa22

∣∣ ≤ 1 + 2 exp

(
−2µ

1− µ

)
for 0 ≤ µ < 1.

The elementary inequality |a3 − a22| ≤ 1 is obtained as µ → 1. The coefficient
functional

Fµ(f) = a3 − a22,

on the normalized analytic functions f in the open unit disk U also has a signif-
icant impact on geometric function theory. The Fekete-Szegö problem is known
as the maximization problem for functional |Fµ(f)|.
Researchers were concerned about several classes of univalent functions [11, 17,
22, 33] due to the Fekete-Szegö problem, proposed in 1933 [12] therefore, it
stands to reason that similar inequalities were also discovered for bi-univalent
functions and fairly recent publications can be cited to back up the claim that
the subject still yields intriguing findings [1, 3, 35].
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Because of their importance in probability theory, mathematical statistics, math-
ematical physics and engineering, orthogonal polynomials have been the subject
of substantial research in recent years from a variety of angles. The classical or-
thogonal polynomials are the orthogonal polynomials that are most commonly
used in applications (Hermite polynomials, Laguerre polynomials, Jacobi polyno-
mials and Bernoulli). We point out [1, 2, 3, 4, 16, 31, 32] as more recent examples
of the relationship between geometric function theory and classical orthogonal
polynomials.
Fractional calculus, a classical branch of mathematical analysis whose founda-
tions were laid by Liouville in an 1832 paper and is currently a very active re-
search field [21], is one of many special functions that are studied. This branch of
mathematics is known as the Bernoulli polynomials, named after Jacob Bernoulli
(1654−1705). A novel approximation method based on orthonormal Bernoulli’s
polynomials has been developed to solve fractional order differential equations
of the Lane-Emden type [28], whereas in [7, 9, 20], Bernoulli polynomials are
utilized to numerically resolve Freehold fractional integro differential equations
with right sided Caputo derivatives.
The Bernoulli polynomials Bn(x) are often defined using the generating function:

F (x, t) =
text

et − 1
=

∞∑
n=0

Bn(x)

n!
tn, |t| < 2π, (3)

where Bn(x) are polynomials in x, for each non negative integer n.
The Bernoulli [23] polynomials are easily computed by recursion since

n−1∑
j=0

(
n
j

)
Bj(x) = nxn−1, n = 2, 3, · · ·. (4)

The initial few polynomials of Bernoulli are

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2−x+ 1

6
, B3(x) = x3− 3

2
x2+

1

2
x, · · ·. (5)

Jackson [14,15] at the beginning of the twentieth century studied consequences.
The key concept is the q-derivative operator defined as follows:

Dqf(z) =

{
f(z)−f(qz)

z(1−q) , z ̸= 0

f ′(0), z = 0

which is said to be q-derivative (or difference) operator of a function f . By
taking q-derivative of the function f in the form (1), we can see that

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1, z ̸= 0,

where

[n]q =
1− qn

1− q
.
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Note that as q −→ 1−, [n]q −→ n.
Using q-derivative operator and subordination now, we define new subclasses of
bi-univalent functions, associated with Bernoulli polynomials. The class Sqs of
q-starlike functions with respect to symmetric points, was introduced by Sak-
aguchi [28] which consists of functions f ∈ S satisfying the condition

ℜ
{

zDqf(z)

f(z)− f(−z)

}
> 0, (z ∈ U).

The class Cq
s of q-convex functions with respect to symmetric points, was intro-

duced by Wang [34] which consists of f ∈ S satisfying the condition

ℜ
{

Dq[zDqf(z)]

Dq[f(z)− f(−z)]

}
> 0, (z ∈ U).

In this paper, we introduce two subclasses of
∑

: the class SΣ,q
s (x) of functions

bi-q-starlike with respect to the symmetric points and the relative class CΣ,q
s (x)

of functions bi-q-convex with respect to the symmetric points associated with
Bernoulli polynomials. The definitions are as follows:

Definition 1.1. Let f ∈ SΣ,q
s (x) be the function, the next subordinations holds:

2zDqf(z)

f(z)− f(−z)
≺ F (x, z), (6)

and
2ωDq[g(ω)]

g(ω)− g(−ω)
≺ F (x, ω), (7)

where z, ω ∈ U, F (x, z) is given by (3), and g = f−1 is given by (2).

Definition 1.2. Let f ∈ CΣ,q
s (x) be the function, the next subordinations holds:

2Dq(zDqf(z))

Dq[f(−z)− f(z)]
≺ F (x, z), (8)

and
2Dq[ωDqg(ω)]

Dq[g(ω)− g(−ω)]
≺ F (x, ω), (9)

where z, ω ∈ U, F (x, z) is given by [3] , and g = f−1 is given by (2).

Lemma 1.3. [24] Let c(z) =
∑∞

n=1 cnz
n, |c(z)| < 1, z ∈ U, be an analytic

function in U. Then

|c1| ≤ 1, |cn| ≤ 1− |c1|2, n = 2, 3, · · ·.

2.Coefficients Estimates for the Class SΣ,q
s (x)

We obtain upper bounds of |a2| and |a3| for the functions belonging to class
SΣ,q
s (x).
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Theorem 2.1. If f ∈ SΣ,q
s (x), then

|a2| ≤ |B1(x)|
√

6|B1(x)|, (10)

and

|a3| ≤
B1(x)

[2]q
+

[B1(x)]
2

2[2]q
. (11)

Proof. Let f ∈ S
∑

,q
s (x) and g ∈ f−1. From definition in (6) and (7), we have

2zDqf(z)

f(z)− f(−z)
= F (x, ψ(x)), (12)

and
2ωDq(g(ω))

g(ω)− g(−ω)
= F (x, χ(ω)), (13)

where ψ and χ are analytic functions in U given by

ψ(z) = r1z + r2z
2 + · · ·, (14)

χ(ω) = s1ω + s2ω
2 + · · ·, (15)

and ψ(0) = χ(0) = 0, and |ψ(z)| < 1, |χ(ω)| < 1, z, ω ∈ U.
As a result of Lemma 1.3,

|rk| ≤ 1 and |sk| ≤ 1, k ∈ N. (16)

If we replace (14) and (15) in (12) and (13) respectively, we obtain

2zDqf(z)

f(z)− f(−z)
= B0(x) + B1(x)ψ(z) +

B2(x)

2!
ψ2(z) + · · ·, (17)

and
2ωDq(g(ω))

g(ω)− g(−ω)
= B0(x) + B1(x)χ(ω) +

B2(x)

2!
χ2(ω) + · · ·. (18)

In view (1) and (2), from (17) and (18), we obtain

1 + [2]qa2z + [2]qa3z
2 + · · · = 1 + B1(x)r1z +

[
B1(x)r2 +

B2(x)

2!
r21

]
z2 + · · ·

and

1−[2]qa2ω+[2]q(2a
2
2−a3)ω2+··· = 1+B1(x)s1ω+

[
B1(x)s2 +

B2(x)

2!
s21

]
ω2+···,

which yields the following relations:

[2]qa2 = B1(x)r1, (19)

[2]qa3 = B1(x)r2 +
B2(x)

2!
r21, (20)

and
−[2]qa2 = B1(x)s1, (21)

[2]q(2a
2
2 − a3) = B1(x)s2 +

B2(x)

2!
s21. (22)
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From (19) and (21), it follows that

r1 = −s1 (23)

and
2[2]2qa

2
2 = [B1(x)]

2(r21 + s21) (24)

a22 =
[B1(x)]

2(r21 + s21)

2[2]2q
. (25)

Adding (20) and (22), using (24), we obtain

a22 =
[B1(x)]

3(r2 + s2)

2([2]q)([B1(x)]2 − B2(x))
. (26)

Using relation (5), from (16) for r2 and s2, we get (10).
Using (23) and (24), by subtracting (22) from (20), we get

a3 =
[B1(x)](r2 − s2) +

B2(x)
2! (r21 − s21)

([2]q)2
+ a22

=
[B1(x)](r2 − s2) +

B2(x)
2! (r21 − s21)

[2]2q
+

[B1(x)]
2(r21 + s21)

2([2]q)2
. (27)

Once again applying (23) and using (5), for the coefficients, r1, s1, r2, s2, we
deduce (11). □

3.The Fekete-Szegö Problem for the Function Class SΣ,q
s (x)

We obtain the Fekete-Szegö inequality for the class SΣ,q
s (x) due to the result

of Zaprawa [35]

Theorem 3.1. If f given by (1) is in the class S
∑

,q
s (x), where µ ∈ R, then we

have

|a3 − µa22| ≤

{
B1(x)
[2]q

, |h(µ)| ≤ 1
4 ,

2B1(x)|h(µ)|, |h(µ)| ≥ 1
4 ,

where
h(µ) = [3]q(1− µ)[B1(x)]

2.

Proof. If f ∈ SΣ,q
s (x) is given by (1), from (25) and (26), we have

a3 − µa22

=
B1(x)(r2 − s2)

2([2]q)
+ (1− µ)a22

=
B1(x)(r2 − s2)

2([2]q)
+

(1− µ)[B1(x)]
3(r2 + s2)

2([2]q)([B1(x)]2 − B2(x))

= B1(x)

[
r2

2([2]q)
− s2

2([2]q)
+

(1− µ)[B1(x)]
2r2

2([2]q)([B1(x)]2 − B2(x))
+

(1− µ)[B1(x)]
2s2

4([B1(x)]2 − B2(x))

]
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= B1(x)

[(
h(µ) +

1

4

)
r2 +

(
h(µ)− 1

4

)
s2

]
,

where

h(µ) =
(1− µ)[B1(x)]

2

2([2]q)([B1(x)]2 − B2(x))
.

Now, by using (5)

a3 − µa22 =

(
x− 1

2

)[(
h(µ) +

1

4

)
r2 +

(
h(µ) +

1

4

)
s2

]
,

where

h(µ) = 3(1− µ)

(
x− 1

2

)2

.

Therefore, given (5) and (16), we conclude that the necessary inequality holds.
□

4.Coefficients Estimates for the Class C
∑

,q
s (x)

We will obtain upper bounds of |a2| and |a3| for the functions belonging to a

class C
∑

,q
s (x).

Theorem 4.1. If f ∈ C
∑

,q
s (x), then

|a2| ≤
|B1(x)|

√
|B1(x)|√∣∣2[3]q[B1(x)|]2 − 2([2]2q)B2(x)

∣∣ , (28)

and

|a3| ≤
B1(x)

2[3]q
+

[B1(x)]
2

2([2]3q)
. (29)

Proof. Let f ∈ C
∑

,q
s (x) and g ∈ f−1. From definition in (8) and (9), we get

2Dq[zDqf(z)]

Dq[f(z)− f(−z)]
= F (x, ψ(x)), (30)

and
2Dq[ωDqg(ω)]

Dq[g(ω)− g(−ω)]
= F (x, χ(ω)), (31)

where ψ and χ are analytic functions in U given by

ψ(z) = r1z + r2z
2 + · · ·, (32)

χ(ω) = s1ω + s2ω
2 + · · ·, (33)

and ψ(0) = χ(0) = 0, and |ψ(z)| < 1, |χ(ω)| < 1, z, ω ∈ U.
As a result of Lemma 1.3,

|rk| ≤ 1 and |sk| ≤ 1, k ∈ N. (34)
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If we replace (32) and (33) in (30) and (31) respectively, we obtain

2Dq[zDqf(z)]

Dq[f(z)− f(−z)]
= B0(x) + B1(x)ψ(z) +

B2(x)

2!
ψ2(z) + · · ·, (35)

and

2Dq[ωDqg(ω)]

Dq[g(ω)− g(−ω)]
= B0(x) + B1(x)χ(ω) +

B2(x)

2!
χ2(ω) + · · ·. (36)

In view (1) and (2), from (35) and (36), we obtain

1 + 2[2]qa2z + 2[3]qa3z
2 + · · · = 1 + B1(x)r1z +

[
B1(x)r2 +

B2(x)

2!
r21

]
z2 + · · ·

and

1−2[2]qa2ω+2[3]q(2a
2
2−a3)ω2+··· = 1+B1(x)s1ω+

[
B1(x)s2 +

B2(x)

2!
s21

]
ω2+···,

which yields the following relations:

2[2]qa2 = B1(x)r1, (37)

2[3]qa3 = B1(x)r2 +
B2(x)

2!
r21, (38)

and

−2[2]qa2 = B1(x)s1, (39)

2[3]q(2a
2
2 − a3) = B1(x)s2 +

B2(x)

2!
s21. (40)

From (37) and (39), it follows that

r1 = −s1 (41)

and

2[2]4qa
2
2 = [B1(x)]

2(r21 + s21) (42)

a22 =
[B1(x)]

2(r21 + s21)

2[2]4q
. (43)

Adding (38) and (40), using (43), we obtain

a22 =
[B1(x)]

3(r2 + s2)

2[2]q([3]q[B1(x)]2 − 2[2]qB2(x))
. (44)

Using relation (5), from (34) for r2 and s2, we get (28).
Using (41) and (42), by subtracting (40) from (38), we get

a3 =
[B1(x)](r2 − s2) +

B2(x)
2! (r21 − s21)

3[2]2q
+ a22
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=
[B1(x)](r2 − s2) +

B2(x)
2! (r21 − s21)

3[2]2q
+

[B1(x)]
2(r21 + s21)

2[2]4q
. (45)

Once again applying (41) and using (5), for the coefficients, r1, s1, r2, s2, we
deduce (29). □

5.The Fekete-Szegö Problem for the Function Class CΣ,q
s (x)

We obtain the Fekete-Szegö inequality for the class CΣ,q
s (x) due to the result

of Zaprawa[35]

Theorem 5.1. If f given by (1) is in the class C
∑

,q
s (x), where µ ∈ R, then we

have

|a3 − µa22| ≤

{
B1(x)
3[2]q

, |h(µ)| ≤ 1
12 ,

2B1(x)|h(µ)|, |h(µ)| ≥ 1
12 ,

where

h(µ) =
(1− µ)[B1(x)]

2

2[2]q([3]q[B1(x)]2 − 2[2]qB2(x))
.

Proof. If f ∈ CΣ,q
s (x) is given by (1), from (44) and (45), we have

a3 − µa22

=
B1(x)(r2 − s2)

3[2]2q
+ (1− µ)a22

=
B1(x)(r2 − s2)

3[2]2q
+

(1− µ)[B1(x)]
3(r2 + s2)

2[2]q([3]q[B1(x)]2 − 2[2]qB2(x))

= B1(x)

[
r2 − s2
3[2]2q

+
(1− µ)[B1(x)]

2r2
2[2]q(3[B1(x)]2 − 4B2(x))

+
(1− µ)[B1(x)]

2s2
2[2]q(3[B1(x)]2 − 4B2(x))

]
= B1(x)

[(
h(µ) +

1

12

)
r2 +

(
h(µ)− 1

12

)
s2

]
,

where

h(µ) =
(1− µ)[B1(x)]

2

2[2]q(3[B1(x)]2 − 4B2(x))
.

Now, by using (5)

a3 − µa22 =

(
x− 1

2

)[(
h(µ) +

1

12

)
r2 +

(
h(µ)− 1

12

)
s2

]
,

where

h(µ) =
(1− µ)

(
x− 1

2

)2
2[2]q(3

(
x− 1

2

)2 − 4(x2 − x+ 1
6 ))

.

Therefore, given (5) and (34), we conclude that the necessary inequality holds.
□
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6.Conclusions

We introduce and investigate new subclasses of bi-univalent functions in U
associated with Bernoulli polynomials and satisfying subordination conditions.
Moreover, we obtain upper bounds for the initial Taylor-Maclaurin coefficients
|a2|, |a3| and Fekete–Szegö problem |a3 − µa22| for functions in these subclasses.
The approach employed here has also been extended to generate new bi-univalent
function subfamilies using the other special functions. The researchers may carry
out the linked outcomes in practice.
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