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L-FUZZY 2−ABSORBING IDEALS IN AN ADL

NATNAEL TESHALE AMARE∗ AND S. NAGESWARA RAO

Abstract. In this study, we present the concepts of L−fuzzy 2−absorbing

ideals and 2−absorbing L−fuzzy ideals of an ADL. We define and anal-
yse the concept of L−fuzzy 2−absorbing ideals using the t-cut method.

Furthermore, we demonstrate that both the image and the pre-image of

L−fuzzy 2−absorbing ideals remain L−fuzzy 2−absorbing ideals. The
main focus of the study is to establish the correlation between the L−fuzzy

prime ideal and the L−fuzzy 2−absorbing ideal, the prime L−fuzzy ideal

and the 2−absorbing L−fuzzy ideal, and the 2−absorbing L−fuzzy ideal
and the L−fuzzy 2−absorbing ideals. In conclusion, we depict 2−absorbing

L−fuzzy ideals in terms of the 2−absorbing ideal of an ADL and the

2−absorbing element in a frame.
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1. Introduction

In the field of fuzzy set theory, L.A. Zadeh [14] introduced the concept of fuzzy
subsets, which are functions from a set X to [0, 1]. J.A. Goguen [1] expanded on
this idea by using a complete lattice L instead of the valuation set [0, 1] leading
to the study of L−fuzzy sets. This generalized approach attracted the interest
of algebraists who explored fuzzy subalgebras in various algebraic structures. In
1982, W.J. Liu [3] conducted research on fuzzy subrings and fuzzy ideals in rings.
Following this, several researchers, such as Malik and Mordeson [4, 5], Kukharjee
and Sen [6], Lehmke [2], Swamy and Raju [13], Swamy [10], Nimbhorker and Patil
[8], Swamy, Raj and Natnael [11], delved into the study of fuzzy subrings, fuzzy
ideals, fuzzy prime ideals in lattices and ADLs. These researchers contributed
to the advancement of knowledge in these areas.
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The idea of an ADL was first conceptualized by Swamy and Rao [12]. More
recently, Natnael [7] has expanded on this idea by introducing the notion of
weakly 2-absorbing ideals of an ADL. In this research paper, we further explore
this concept by presenting the idea of L−fuzzy 2-absorbing ideal of an ADL
which is the generalization of the notion of L−fuzzy prime ideals of an ADL
introduced by Swamy, Raj and Natnael [9]. Our discussion revolves around the
characterization of L−fuzzy 2-absorbing ideal using the t-cut framework. As-
suming R and G are ADLs, and a lattice homomorphism, h, exists from R to
G. If we consider an L−fuzzy 2-absorbing ideal ψ of G, it can be inferred that
h−1(ψ) will result in an L-fuzzy 2-absorbing ideal of R. Furthermore, if h is
an isomorphism and η is an L−fuzzy 2-absorbing ideal of R, then the result
of h(η) will be an L−fuzzy 2-absorbing ideal of G. We also characterize all 2-
absorbing L−fuzzy ideals of an ADL R in terms of both the 2-absorbing ideal of
an ADL and the 2−absorbing element in a frame L. Mainly, we extensively delve
into the relationship between the L−fuzzy prime ideal and L−fuzzy 2-absorbing
ideal, prime L−fuzzy ideal and 2-absorbing L−fuzzy ideal, and L−fuzzy ideal
and L−fuzzy 2-absorbing ideal. We also demonstrate that the intersection of
any two L−fuzzy prime ideals results in an L−fuzzy 2-absorbing ideal. How-
ever, the intersection of any two L−fuzzy 2-absorbing ideals may not necessarily
yield an L−fuzzy 2-absorbing ideal. Similarly, the intersection of two prime
L−fuzzy ideals can produce a 2A−L−fuzzy ideal, but the intersection of any
two 2A−L−fuzzy ideals may not result in a 2A−L−fuzzy ideal. We validate
these claims by providing counter examples.

Throughout this paper, R stands for an ADL (A,∧,∨, 0) with a maximal
element and L− stands for a complete lattice (L,∧,∨, 0, 1) satisfying the infinite
meet distributive law and this type of a lattice is called a frame. More over, in
this paper we denote 2−absorbing ideal of R by 2A−ideal of R.

2. Preliminaries

In this section, we recall some definitions and basic results mostly taken from
[12] and [9].

Definition 2.1. An algebra R = (R,∧,∨, 0) of type (2, 2, 0) is called an Almost
Distributive Lattice(abbreviated as ADL) if it satisfies the following conditions
for all p, q and r ∈ R.

(1) 0 ∧ p = 0
(2) p ∨ 0 = p
(3) p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)
(4) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)
(5) (p ∨ q) ∧ r = (p ∧ r) ∨ (q ∧ r)
(6) (p ∨ q) ∧ q = q

Any bounded below distributive lattice is an ADL.
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Example 2.2. Any nonempty set Y can be made into an ADL by fixing an
arbitrarily chosen element 0 in Y and fix an arbitrary element x0 ∈ Y . For any
x, y ∈ Y , define ∧ and ∨ on X by,

x ∧ y =

{
y if x ̸= x0

x0 if x = x0
and x ∨ y =

{
x if x ̸= x0

y if x = x0

Then (Y,∧,∨, x0) is an ADL with x0 as its zero element. This ADL is called the
discrete ADL.

Definition 2.3. Let R = (R,∧,∨, 0) be an ADL. For any a and b ∈ R, define
a ≤ b if a = a ∧ b (⇔ a ∨ b = b). Then ≤ is a partial order on R with respect to
which 0 is the smallest element in R.

Theorem 2.4. The following hold for any p, q and r in R.

(1) p ∧ 0 = 0 and 0 ∨ p = p
(2) p ∧ p = p = p ∨ p
(3) p ∧ q ≤ q ≤ q ∨ p
(4) p ∧ q = p⇔ p ∨ q = q
(5) p ∧ q = q ⇔ p ∨ q = p
(6) (p ∧ q) ∧ r = p ∧ (q ∧ r) (i.e., ∧ is associative)
(7) p ∨ (q ∨ p) = p ∨ q
(8) p ≤ q ⇒ p ∧ q = p = q ∧ p

(
⇔ p ∨ q = q = q ∨ p

)
(9) (p ∧ q) ∧ r = (q ∧ p) ∧ r
(10) (p ∨ q) ∧ r = (q ∨ p) ∧ r
(11) p ∧ q = q ∧ p⇔ p ∨ q = q ∨ p
(12) p ∧ q = inf{p, q} ⇔ p ∧ q = q ∧ p⇔ p ∨ q = sup{p, q}.

Definition 2.5. Let R and G be ADLs. A mapping h : R → G is called a
homomorphism if the following are satisfied, for any p, q ∈ R.
(1). h(p ∧ q) = h(p) ∧ h(q)
(2). h(p ∨ q) = h(p) ∨ h(q)
(3). h(0) = 0.

Definition 2.6. Let R and G be ADLs and form the set R×G by
R×G = {(p, q) : p ∈ R and q ∈ G}. Define ∧ and ∨ in R×G by,

(p, q) ∧ (u, r) = (p ∧ u, q ∧ r)
and (p, q) ∨ (u, r) = (p ∨ u, q ∨ r), for any (p, q), (u, r) ∈ R×G. Then

(R×G,∧,∨, 0)
is an ADL under the pointwise operations and 0 = (0, 0) is the zero element in
R×G.

Definition 2.7. Let I be a non empty subset of R. Then I is called an ideal of
R if a, b ∈ I implies a ∨ b ∈ I and a ∧ p ∈ I for all p ∈ R.

As a consequence, for any ideal I of R, p ∧ a ∈ I for all a ∈ I and p ∈ R.
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Definition 2.8. Let R = (R,∧,∨, 0) be an ADL. A proper ideal P of R is said
to be a 2A−ideal of R if p ∧ q ∧ r ∈ P ⇒ p ∧ q ∈ P or q ∧ r ∈ P or p ∧ r ∈ P ,
for any p, q, r ∈ R.

Definition 2.9. An L-fuzzy subset η of X is a mapping from X into L, where
L is a complete lattice satisfying the infinite meet distributive law. If L is the
unit interval [0, 1] of real numbers, then these are the usual fuzzy subsets of X.

Definition 2.10. An L−fuzzy subset η of R is said to be an L−fuzzy ideal of
R, if η(0) = 1 and η(p ∨ q) = η(p) ∧ η(q), for all p, q ∈ R.

Definition 2.11. A proper L−fuzzy ideal η of R is called a prime L−fuzzy ideal
if for any L−fuzzy ideals ν and µ of R, ν ∧ µ ≤ η implies either ν ≤ η or µ ≤ η.

Definition 2.12. A proper L−fuzzy ideal η of R is called an L−fuzzy prime
ideal of R if for any p, q ∈ R, η(p ∧ q) = η(p) or η(q).

3. Fuzzy 2A−ideals

In this section, we introduce the notion of L−fuzzy 2A−ideals of an Almost
Distributive Lattice (ADL) which fuzzified the concept of 2A−ideals of an ADL.
Recall that a proper ideal P of an ADL R is called a 2A−ideal of R if whenever
p, q, r ∈ R and p ∧ q ∧ r ∈ P , then either p ∧ q ∈ P or q ∧ r ∈ P or p ∧ r ∈ P .
Now, we have the following.

Definition 3.1. A proper L−fuzzy ideal η of an ADL R is an L−fuzzy 2A−ideal
of R if for all p, q and r ∈ R, η(p ∧ q ∧ r) = η(p ∧ q) or η(p ∧ r) or η(q ∧ r).

Example 3.2. Let R = {0, p, q, r} and ∨ and ∧ be binary operations on R
defined by:

∨ 0 p q r
0 0 p q r
p p p p p
q q q q q
r r p q r

∧ 0 p q r
0 0 0 0 0
p 0 p q r
q 0 p q r
r 0 r r r

Then, (R,∧,∨, 0) is an ADL which is not a lattice (p ∧ q ̸= q ∧ p). Define an
L−fuzzy subset η : R → [0, 1] by η(0) = 1, η(p) = 0, η(q) = 0 and η(r) = 0.5.
Then, Clearly η is an L−fuzzy ideal of R. Now, η(p ∧ q ∧ r) = η(q ∧ r) or
η(p ∧ q ∧ r) = η(p ∧ r) or η(p ∧ q ∧ r) = η(p ∧ q). Therefore, η is an L−fuzzy
2A−ideal of R.

Next, we characterize the notion of L−fuzzy 2A−ideal in terms of t-cut.
Recall that for any t ∈ L, the set ηt = {x ∈ R : t ≤ η(p)} is called the t-cut of η.

Theorem 3.3. Let η be an L−fuzzy ideal of R. Then ηt is a 2A−ideal of R,
for all t ∈ L if and only if η is an L−fuzzy 2A−ideal of R.

Proof. Suppose ηt is a 2A−ideal, for all t ∈ L. Let p, q, r ∈ R and put t =
η(p ∧ q ∧ r). Then p ∧ q ∧ r ∈ ηt. Assume t ≰ η(p ∧ q) ∨ η(p ∧ r) ∨ η(q ∧ r).
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Then t ≰ η(p ∧ q), t ≰ η(p ∧ r) and t ≰ η(q ∧ r), implies that p ∧ q /∈ ηt,
p ∧ r /∈ ηt and q ∧ r /∈ ηt. Which gives a contradiction, since ηt is a 2A−ideal.
Thus η(p∧ q ∧ r) = t ≤ η(p∧ q)∨ η(p∧ r)∨ η(q ∧ r). Therefore, η is an L−fuzzy
2A−ideal of R. Conversely suppose that η is an L−fuzzy 2A−ideal of R. Then
for all p, q, r ∈ R, t = η(p ∧ q ∧ r) ⇒ p ∧ q ∧ r ∈ ηt
⇒ t ≤ η(p ∧ q ∧ r) = η(p ∧ q)
⇒ t ≤ η(p ∧ q)
⇒ p ∧ q ∈ ηt. Similarly, p ∧ r ∈ ηt or q ∧ r ∈ ηt.
Thus ηt is a 2A−ideal of R, for all t ∈ L. □

Corollary 3.4. An ideal P of R is a 2A−ideal of R if and only if its charac-
teristics map χP is an L−fuzzy 2A−ideal of R.

Now, we characterize the concept of L−fuzzy 2A−ideal of an ADL.

Theorem 3.5. Let η be an L−fuzzy ideal of R. Then η is an L−fuzzy 2A−ideal
of R iff η(p ∧ q ∧ r) ≤ η(p ∧ q) ∨ η(p ∧ r) ∨ η(q ∧ r), for all p, q, r ∈ R.

Proof. Let η be an L−fuzzy 2A−ideal of R. Let p, q, r ∈ R. Then η(p∧ q ∧ r) =
η(p∧ q) ≤ η(p∧ q)∨ η(p∧ r)∨ η(q ∧ r). Therefore, η(p∧ q ∧ r) ≤ η(p∧ q)∨ η(p∧
r)∨η(q∧r). Conversely suppose η(p∧q∧r) ≤ η(p∧q)∨η(p∧r)∨η(q∧r), for all
p, q, r ∈ R. Since η is an L−fuzzy ideal, η(0) = 1 and hence 0 ∈ ηt. Thus ηt ̸= ∅.
Let t = η(p∧ q ∧ r). Then p∧ q ∧ r ∈ ηt. Now, t ≤ η(p∧ q)∨ η(p∧ r)∨ η(q ∧ r),
which implies that t ≤ η(p∧q) or t ≤ η(p∧r) or t ≤ η(q∧r) and hence p∧q ∈ ηt
or p∧ r ∈ ηt or q ∧ r ∈ ηt. Thus ηt is a 2A−ideal in R. By Theorem 3.3, η is an
L−fuzzy 2A−ideal. □

Theorem 3.6. Let η be an L−fuzzy ideal of R such that η(p ∧ q ∧ r) ≤ η(p ∧
q) ∨ η(p ∧ r) ∨ η(q ∧ r), for all p, q, r ∈ R. Define ⟨η⟩ : R→ L by

⟨η⟩(p) =

{
1 if p = 0

η(p) if p ̸= 0.

Then ⟨η⟩ is the smallest L−fuzzy 2A−ideal of R containing η.

Proof. Let p, q, r ∈ R.
Now, p ∧ q ∧ r = 0 ⇒ either p ∧ q = 0 or p ∧ r = 0 or q ∧ r = 0
⇒ ⟨η⟩(p ∧ q ∧ r) = 1 and ⟨η⟩(p ∧ q) = 1 or ⟨η⟩(p ∧ r) = 1 or ⟨η⟩(q ∧ r) = 1
⇒ ⟨η⟩(p ∧ q ∧ r) = ⟨η⟩(p ∧ q) or ⟨η⟩(p ∧ r) or ⟨η⟩(q ∧ r),
p ∧ q ∧ r ̸= 0 ⇒ p ∧ q ̸= 0, p ∧ r ̸= 0 and q ∧ r ̸= 0
⇒ ⟨η⟩(p ∧ q ∧ r) = η(p ∧ q ∧ r) and ⟨η⟩(p ∧ q) = η(p ∧ q), ⟨η⟩(p ∧ r) = η(p ∧ r)
and ⟨η⟩(q ∧ r) = η(q ∧ r) ⇒ ⟨η⟩(p∧ q ∧ r) = ⟨η⟩(p∧ q) or ⟨η⟩(p∧ r) or ⟨η⟩(q ∧ r).
Thus ⟨η⟩ is an L−fuzzy 2A−ideal of R. Let ψ be an L−fuzzy 2A−ideal of R
containing η. That is, η(p) ≤ ψ(p), for all p ∈ R. If p = 0, then η(p) = ψ(p).
Assume p ̸= 0. Then ⟨η⟩(p) = η(p) ≤ ψ(p) and hence ⟨η⟩(p) ≤ ψ(p). So,
⟨η⟩ ≤ ψ. Therefore, ⟨η⟩ is the smallest L−fuzzy 2A−ideal of R containing η. □
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We have shown that the t-cuts of any L−fuzzy 2A−ideal of an ADL R are
2A−ideals of R. In the following, We demonstrate below that the L−fuzzy
2A−ideal is completely determined by these t-cuts.

Theorem 3.7. Let {Pt}t∈L be a class of 2A−ideals of R such that
⋂

t∈M

Pt =

PSupM , for any M ⊆ L. Define η : R → L by η(p) = Sup {t ∈ L : p ∈ Pt}.
Then η is an L−fuzzy 2A−ideal of R such that Pt is equal to the t-cut of η, for
each t ∈ L. Conversely, every L−fuzzy 2A−ideal of R can be obtained as above.

Proof. Suppose that {Pt}t∈L is a 2A−ideals of R such that
⋂

t∈M

Pt = PSupM , for

anyM ⊆ L. Then for any p ∈ R and t ∈ L, we have p ∈ Pt ⇒ t ≤ η(p) ⇒ p ∈ ηt.
Thus Ps ⊆ ηs, for all s ∈ L. Also for any t, s ∈ L such that s ≤ t.
s ≤ t⇒ t = t ∨ s⇒ Pt = Pt∨s = Pt ∩ Ps ⇒ Pt ⊆ Ps.
Now, p ∈ ηs ⇒ s ≤ η(p) = ∨

{
t ∈ L : p ∈ Pt

}
⇒ s = s ∧

(
∨ {t ∈ L : p ∈ Pt}

)
⇒ s = ∨{s ∧ t : p ∈ Pt} (by the inifinite meet distributivity in L)
⇒ Ps = P ∨

p∈Pt

s∧t =
⋂

p∈Pt

Ps∧t

⇒ p ∈
⋂

p∈Pt

Ps∧t = Ps (Since s ∧ t ≤ t⇒ Pt ⊆ Ps∧t)

⇒ p ∈ Ps.
Therefore, ηs ⊆ Ps, for all s ∈ L. Therefore, ηs = Ps, for all s in L. Since
each Ps is a 2A−ideal of R and we have that η is an L−fuzzy 2A−ideal of
R. Conversely suppose that η is an L−fuzzy 2A−ideal of R. Then each t-cut,
ηt = {p ∈ R | t ≤ η(p)} is a 2A−ideal of R and

⋂
t∈M

ηt = η ∨
t∈M

t for any M ⊆ L.

Also, for any p ∈ R, η(p) =
∨{

t ∈ L : p ∈ ηt
}
. □

Theorem 3.8. For any L−fuzzy subset η of R, define η̄ by η̄(p) = Sup {t ∈ L :
p ∈ ⟨ηt⟩}, for all p ∈ R. Then η̄ is an L−fuzzy 2A−ideal of R and η̄ = ⟨η⟩.
Theorem 3.9. The set of all L−fuzzy 2A−ideals of R is a complete lattice in
which the supremum and infimum of the family of {ηi}i∈∆ of R are given by∨
i∈∆

ηi = ⟨
⋃
i∈∆

ηi⟩ and
∧
i∈∆

ηi =
⋂
i∈∆

ηi.

Next, we introduce t-level L−fuzzy 2A−ideals of R.

Theorem 3.10. Let P be a 2A−ideal of R. Then for any t ∈ L, the mapping
tP : R→ L defined by

t
P
(p) =

{
1 if x ∈ P

t if x /∈ P

is an L−fuzzy 2A−ideal of R and called the t-level L−fuzzy 2A−ideal of R
corresponding to a 2A−ideal P of R.

Theorem 3.11. For a given t ∈ L, the mapping P 7−→ t
P
is an isomorphism of

the lattice of all 2A−ideals of R onto the lattice of all t-level L−fuzzy 2A−ideals
of R.
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In the following, we facilitate the inter-relationship between L−fuzzy prime
ideals and L−fuzzy 2A−ideals of ADL.

Theorem 3.12. Every L−fuzzy prime ideal of R is an L−fuzzy 2A−ideal of R.

Proof. Let η be an L−fuzzy prime ideal of R and p, q, r ∈ R. Then
η(p ∧ q ∧ r) ≤ η(p ∧ q) ∨ η(r) or
η(p ∧ q ∧ r) ≤ η(p) ∨ η(q ∧ r) or
η(p ∧ q ∧ r) ≤ η(q) ∨ η(p ∧ r) (since η is an L−fuzzy ideal)
which implies that η(p∧ q ∧ r) ≤ η(p∧ q)∨ η(p∧ r)∨ η(q ∧ r) (since q ∧ r ≤ r ⇒
η(r) ≤ η(q ∧ r) and so on). Hence the result. □

The converse of the above result is not true; consider the following example.

Example 3.13. Let R = {0, p, q, r, 1} be the lattice represented by the Hasse
diagram given below:

�
�
�

@
@

@

@
@

@

�
�
�

d
d d

d

d
r

p q

1

0
Figure 1: The complete lattice diagram.

Now define η : R → [0, 1] by η(0) = 1, η(r) = 2/3, η(q) = 1/3, η(p) = 0 and
η(1) = 0. For any a, b ∈ R, we have a ≤ b imply that η(b) ≤ η(a) and hence
η is an antitone map. Clearly η is an L−fuzzy ideal of R, since η(p ∨ q) =
η(1) = 0 = η(p) ∧ η(q). Now, η(p ∧ q ∧ r) = η(r) = η(p ∧ q). Therefore, η is
an L−fuzzy 2A−ideal of R, but η is not an L−fuzzy prime ideal of R, since
η(p ∧ q) = η(r) = 2/3 ̸= η(p) and η(q).

Theorem 3.14. Let η and ψ be L−fuzzy prime ideals of R. Then η ∩ ψ is an
L−fuzzy 2A−ideal.

Proof. Let η and ψ be L−fuzzy prime ideals of R and p, q, r ∈ R. Then
(η ∩ ψ)(p ∧ q ∧ r) = η(p ∧ q ∧ r) ∧ ψ(p ∧ q ∧ r)
≤

(
η(p ∧ q) ∨ η(p ∧ r) ∨ η(q ∧ r)

)
∧
(
ψ(p ∧ q) ∨ ψ(p ∧ r) ∨ ψ(q ∧ r)

)
≤

(
η(p) ∨ η(q) ∨ η(r)

)
∧
(
ψ(p) ∨ ψ(q) ∨ ψ(r)

)
(by assumption)

=
(
η(p)∧ψ(p)

)
∨
(
η(p)∧ψ(q)

)
∨
(
η(p)∧ψ(r)

)
∨
(
η(q)∧ψ(p)

)
∨
(
η(q)∧ψ(q)

)
∨(

η(q) ∧ ψ(r)
)
∨
(
η(r) ∧ ψ(p)

)
∨
(
η(r) ∧ ψ(q)

)
∨
(
η(r) ∧ ψ(r)

)
≤

(
η ∩ψ

)
(p)∨

(
η ∩ψ

)
(p∧ q)∨

(
η ∩ψ

)
(p∧ r)∨

(
η ∩ψ

)
(q ∧ p)∨

(
η ∩ψ

)
(q)∨

(
η ∩

ψ
)
(q ∧ r) ∨

(
η ∩ ψ

)
(r ∧ p) ∨

(
η ∩ ψ

)
(r ∧ q) ∨

(
η ∩ ψ

)
(r)
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≤
(
η∩ψ

)
(p∧ q)∨

(
η∩ψ

)
(p∧ r)∨

(
η∩ψ

)
(q∧ r) (since η(q) ≤ η(p∧ q) = η(q∧ p)

and ψ(q) ≤ ψ(p ∧ q) = η(q ∧ p)). Therefore, η ∩ ψ is an L−fuzzy 2A−ideal of
R. □

The intersection of any two L−fuzzy 2A−ideals of an ADL R need not be an
L−fuzzy 2A−ideal of R; consider the following example.

Example 3.15. Let R = {0, a, b, c, d, e, f, , g, h, i, 1} be a lattice whose Hasse
diagram is given below:

Figure 2: The Boolean lattice diagram.

Define L−fuzzy subsets η : R→ [0, 1] and ψ : R→ [0, 1] by η(0) = 1, η(a) = 0.8,
η(b) = 0.8, η(c) = 1, η(d) = 0.8 and η(e) = η(f) = η(g) = η(h) = η(i) = η(1) =
0, and ψ(0) = 1, ψ(a) = 0.9, ψ(b) = 1, ψ(c) = 0.7, ψ(d) = 0, ψ(e) = 0.9
and ψ(f) = ψ(g) = ψ(h) = ψ(i) = ψ(1) = 0. Clearly η and ψ are L−fuzzy
2A−ideals, but η ∩ ψ is not an L−fuzzy 2A−ideal, since
(η ∩ ψ)(0) = η(0) ∧ ψ(0) = 1,
(η ∩ ψ)(a) = η(a) ∧ ψ(a) = 0.8,
(η ∩ ψ)(b) = η(b) ∧ ψ(b) = 0.8,
(η ∩ ψ)(c) = η(c) ∧ ψ(c) = 0.7,
(η ∩ ψ)(d) = η(d) ∧ ψ(d) = 0,
(η ∩ ψ)(e) = η(e) ∧ ψ(e) = 0,
(η ∩ ψ)(f) = η(f) ∧ ψ(f) = 0,
(η ∩ ψ)(g) = η(g) ∧ ψ(g) = 0,
(η ∩ ψ)(h) = η(h) ∧ ψ(h) = 0,
(η ∩ ψ)(i) = η(i) ∧ ψ(i) = 0,
(η ∩ ψ)(1) = η(1) ∧ ψ(1) = 0 and hence
(η ∩ ψ)(g ∧ h ∧ i) = (η ∩ ψ)(a) = 0.8 ≰ 0 = (η ∩ ψ)(g ∧ h) = (η ∩ ψ)(g ∧ i) =
(η ∩ ψ)(h ∧ i).
Definition 3.16. Let η1 and η2 be L−fuzzy subsets of R and G respectively.
Then the product of η1 and η2 is denoted by η1 × η2 and defined by (η1 ×
η2)(a, b) = η1(a) ∧ η2(b), for all (a, b) ∈ R×G.

Theorem 3.17. Let η1 and η2 be L−fuzzy ideals of R and G respectively. Then
η1 × η2 is an L−fuzzy ideal of R×G.
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Proof. Suppose η1 and η2 are L−fuzzy ideals of R and G respectively. Then
(0, 0) ∈ R × G, (η1 × η2)(0, 0) = η1(0) ∧ η2(0) = 1. Also, for all a, b ∈ r and
c, d ∈ G,
(η1 × η2)((a, c) ∨ (b, d)) = (η1 × η2)(a ∨ b, c ∨ d)
= η1(a ∨ b) ∧ η2(c ∨ d)
= η1(a) ∧ η1(b) ∧ η2(c) ∧ η2(d)
= η1(a) ∧ η2(c) ∧ η1(b) ∧ η2(d)
= (η1 × η2)(a, c) ∧ (η1 × η2)(b, d).
Therefore, η1 × η2 is an L−fuzzy ideal of R×G. □

Theorem 3.18. Let η1 and η2 be L−fuzzy prime ideals of R and G respectively.
Then η1 × η2 is an L−fuzzy 2A−ideal of R×G.

Proof. For any p, q, r ∈ R and a, b, c ∈ G,
(η1 × η2)((p, a) ∧ (q, b) ∧ (r, c)) = (η1 × η2)(p ∧ q ∧ r, a ∧ b ∧ c)
= η1(p ∧ q ∧ r) ∧ η2(a ∧ b ∧ c)
≤

[
η1(p ∧ q) ∨ η1(r)

]
∧
[
η2(a ∧ b) ∨ η1(c)

]
or

≤
[
η1(p ∧ r) ∨ η1(q)

]
∧
[
η2(a ∧ c) ∨ η1(b)

]
or

≤
[
η1(q ∧ r) ∨ η1(p)

]
∧
[
η2(b ∧ c) ∨ η1(a)

]
≤

[
η1(p ∧ q) ∧ η2(a ∧ b)

]
∨
[
η1(p ∧ r) ∧ η2(a ∧ c)

]
∨
[
η1(q ∧ r) ∧ η2(b ∧ c)

]
=

[
η1 × η2(p ∧ q, a ∧ b)

]
∨
[
η1 × η2(p ∧ r, a ∧ c)

]
∨
[
η1 × (q ∧ r, b ∧ c)

]
.

Hence the result. □

Theorem 3.19. Let R and G be ADLs, and h : R → G be a lattice homomor-
phism. If ψ is an L−fuzzy 2A−ideal of G, then h−1(ψ) is an L−fuzzy 2A−ideal
of R. If h is an isomorphism and η is an L−fuzzy 2A−ideal of R, then h(η) is
an L−fuzzy 2A−ideal of G.

Proof. Let h be a lattice homomorphism of ADLs R and G and let ψ be an
L−fuzzy 2A−ideal of G. For any p, q, r ∈ R. Then h−1(ψ)(p ∧ q ∧ r) = ψ(h(p ∧
q ∧ r)) = ψ(h(p) ∧ h(q) ∧ h(r)
≤ ψ(h(p) ∧ h(q) ∨ ψ(h(p) ∧ h(r) ∨ ψ(h(q) ∧ h(r)
= ψ(h(p ∧ q) ∨ ψ(h(p ∧ r)) ∨ ψ(h(q ∧ r)).
Therefore, h−1(ψ) is an L−fuzzy 2A−ideal of R. Also, let h be an epimorphism
and η an L−fuzzy 2A−ideal of R. Consider, h(η)(p∧q)∨h(η)(p∧r)∨h(η)(q∧r) =( ∨

a∧b∈h−1(p∧q)

η(a ∧ b)
)
∨
( ∨

a∧c∈h−1(p∧r)

η(a ∧ c)
)
∨
( ∨

b∧c∈h−1(q∧r)

η(b ∧ c)
)

≥∨
a∧b∧c∈h−1(p∧q∧r)

η(a∧b∧c) = h(η)(p∧q∧r). Thus, h(η) is an L−fuzzy 2A−ideal

of G. □
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4. 2A−L−fuzzy ideals

In this section, we discuss the concept of 2A−L−fuzzy ideal of an ADL R
which is weaker than that of a prime L−fuzzy ideal of R and we discuss the
relationship between 2A−L−fuzzy ideal and L−fuzzy 2A−ideal of R.

Definition 4.1. A proper L−fuzzy ideal η of R is a 2A−L−fuzzy ideal of R if
for all L−fuzzy ideals η1, η2, η3 of R, η1 ∧ η2 ∧ η3 ≤ η ⇒ either η1 ∧ η2 ≤ η or
η1 ∧ η3 ≤ η or η2 ∧ η3 ≤ η.

An element t in a frame L is a 2−absorbing element in L if there exists
t1 ∧ t2 ∧ t3 ≤ t implies either t1 ∧ t2 ≤ t or t1 ∧ t3 ≤ t or t2 ∧ t3 ≤ t.

In the following, we characterize all 2A−L−fuzzy ideals of R interms of the
2A−ideal of R and the 2−absorbing element t in L.

Theorem 4.2. Let P be a proper ideal of R. Then tP is a 2A−L−fuzzy ideal
of R if and only if P is a 2A−ideal of R and t is a 2−absorbing element in L.

Proof. Suppose tP is an 2A−L−fuzzy ideal of R. Let P1, P2 and P3 be ideals of
R such that P1 ∩ P2 ∩ P3 ⊆ P . Then tP1

∧ tP2
∧ tP3

= tP1∩P2
∧ tP3

≤ tP and
hence tP1∩P2 ≤ tP or tP3 ≤ tP . So that, P1 ∩ P2 ⊆ P or P3 ⊆ P . Similarly,
either P1 ∩ P3 ⊆ P or P2 ∩ P3 ⊆ P . Thus, P is a 2A−ideal of R. Also, for
any t1, t2, t3 ∈ L such that t1 ∧ t2 ∧ t3 ≤ t. Then (t1 ∧ t2 ∧ t3)P ≤ tP imply
that (t1)P ∧ (t2)P ∧ (t3)P ≤ tP and since tP is a 2A−L−fuzzy ideal, either
(t1)P ∧ (t2)P ≤ tP or (t1)P ∧ (t3)P ≤ tP or (t2)P ∧ (t3)P ≤ tP imply that(
t1 ∧ t2

)
P
≤ tP or

(
t1 ∧ t3

)
P
≤ tP or

(
t2 ∧ t3

)
P
≤ tP and hence t1 ∧ t2 ≤ t or

t1 ∧ t3 ≤ t or t2 ∧ t3 ≤ t. Therefore, t is a 2−absorbing element in L. Conversely
suppose that P is a 2A−ideal of R and t is a 2−absorbing element in L. Let
η1, η2 and η3 be L−fuzzy ideals of R such that η1 ≰ tP , η2 ≰ tP and η3 ≰ tP .
Now there exists p, q, r ∈ R such that η1(p∧ q) ≰ tP (p∧ q), η2(p∧ r) ≰ tP (p∧ r)
and η3(q ∧ r) ≰ tP (q ∧ r). So that, tP (p ∧ q) = tP (p ∧ r) = tP (q ∧ r) = t and
hence p∧ q, p∧ r and q∧ r /∈ P . Since P is a 2A−ideal, p∧ q∧ r /∈ P . Also, since
t is a 2−absorbing element in L and η1(p∧q) ≰ t, η2(p∧r) ≰ t and η3(q∧r) ≰ t,
we have η1(p ∧ q) ∧ η2(p ∧ r) ∧ η3(q ∧ r) ≰ t. Now (η1 ∧ η2 ∧ η3)(p ∧ q ∧ r) =
η1(p ∧ q ∧ r) ∧ η2(p ∧ q ∧ r) ∧ η3(p ∧ q ∧ r)
≥ η1(p ∧ q) ∧ η2(p ∧ r) ∧ η3(q ∧ r)
and hence (η1 ∧ η2 ∧ η3)(p ∧ q ∧ r) ≰ t = tP (p ∧ q ∧ r). So, η1 ∧ η2 ∧ η3 ≰ tP .
Therefore, tP is a 2A−L−fuzzy ideal of R. □

Lemma 4.3. An L−fuzzy ideal η of R is a 2A−L−fuzzy ideal of R if and only
if η is two valued and there exists 0 ∈ R such that η(0) = 1 and η1 is a 2A−ideal
of R.

Proof. Assume that η is a 2A−L−fuzzy ideal. Suppose that η assumes more
than two values. Then there exists p, q, r ∈ R and α ̸= β ̸= γ ∈ L − {1} such
that η(p) = α, η(q) = β and η(r) = γ. Now, define L-fuzzy subsets η1, η2 and
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η3 of R as follows:

η1(b) =

{
1 if b ∈ ⟨p]
0 otherwise,

η2(b) =

{
1 if b = 0

α otherwise
and η3(b) =

{
1 if b = 0

β otherwise.

Then, clearly η1 = 0⟨p], η2 = α⟨0], η3 = β⟨0] and hence, by 4.2, η1, η2 and η3 are
L-fuzzy ideals of R. Also, (η1 ∧ η2 ∧ η3)(b) ≤ η(b), for all b ∈ R; for,
b = 0 ⇒

(
η1 ∧ η2 ∧ η3

)
(b) = η1(b) ∧ η2(b) ∧ η3(b) = 1 ∧ 1 ∧ 1 = 1 = η(0) = η(b)

0 ̸= b ∈ ⟨p] ⇒ η1(b)∧η2(b)∧η3(b) = 1∧α∧β = α∧β = η(p)∧η(q) = η(p∨q) ≤ η(b)
and b /∈ ⟨p] ⇒ η1(b) ∧ η2(b) ∧ η3(b) = 0 ∧ α ∧ β = 0 ≤ η(b).
Therefore, η1∧η2∧η3 ≤ η. By assumption, we have that η1∧η2 ≤ η or η1∧η3 ≤ η
or η2∧η3 ≤ η. But η2∧η3 ≤ η (since η1(p)∧η2(p) = 1, η(p) = α and 1 ≰ α, and
η1(q) ∧ η3(q) = 1, η(q) = β and 1 ≰ β). Therefore, η2 ∧ η3 ≤ η, in particular,
η2(p) ∧ η3(p) ≤ η(p) = α (or, η2(q) ∧ η3(p) ≤ η(q) = β). Since η(p) ̸= η(0) (or,
η(q) ̸= η(0)), it follows that p ̸= 0 (or, q ̸= 0) and hence η2(p) ∧ η3(p) = α ∧ β
(or, η2(q) ∧ η3(q) = α ∧ β). Since α ̸= β, then either α ≤ β or β ≤ α. Thus
β = α ∧ β ≤ α. Therefore α = β. Similarly, if we define an L-fuzzy subset η3 of
R by

η3(b) =

{
1 if b = 0

γ if b ̸= 0,

then it can be verified that β ≤ γ. Thus, either α = β or β = γ and hence
η(p) = η(q) or η(q) = η(r). Which gives a contradiction to our assumption.
Thus η is two valued. Consider the set P = {r ∈ R : η(r) = 1}. Then P is
proper ideal of R, since η is proper. Let t be the other value of η. Then

η(r) =

{
1 if r ∈ P

t otherwise

and hence η = tP . By 4.2, we get that P is a 2A−ideal of R. The converse is
clear. □

Next, we discuss the relationship between 2A−L−fuzzy ideal and L−fuzzy
2A−ideal.

Theorem 4.4. Every 2A−L−fuzzy ideal of R is an L−fuzzy 2A−ideal of R.

Proof. Suppose that η is a 2A−L−fuzzy ideal of R. Then there exists a 2A−ideal
P of R and 2−absorbing element t in L such that η = tP . Then η is an L−fuzzy
2A−ideal of R. □

The converse of the above theorem is not true; that is there are L−fuzzy
2A−ideals of ADLs which are not 2A−L−fuzzy ideals; even when ADL is a
lattice. Consider the following.

Example 4.5. Let R = {0, p, q, r} be an ADL defined in 3.2 and L = {0, s, 1}
with 0 < s < 1. Let η be an L−fuzzy ideal of R defined by η(0) = 1, η(p) =
0, η(q) = t and η(r) = s. Clearly, η is an L−fuzzy 2A−ideal of R while η is not
a 2A−L−fuzzy ideal, since η is not two valued.
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Lemma 4.6. Let P be an ideal of R. If the characteristics map χP is a
2A−L−fuzzy ideal of R, then P is a 2A−ideal of R.

Theorem 4.7. Every prime L−fuzzy ideal of R is a 2A−L−fuzzy ideal of R
and the converse of this is not true.

Proof. Suppose η is a prime L−fuzzy ideal of R. Let η1, η2 and η3 be L−fuzzy
ideals of R such that η1 ∧ η2 ∧ η3 ≤ η. Then, either η1 ∧ η2 ≤ η or η3 ≤ η, or
η1 ∧ η3 ≤ η or η2 ≤ η, or
η2 ∧ η3 ≤ η or η1 ≤ η, since η is prime.
Which implies that either η1 ∧ η2 ≤ η or η1 ∧ η3 ≤ η or η2 ∧ η3 ≤ η. Therefore,
η is a 2A−L−fuzzy ideal of R. □

Example 4.8. Let D = {0, x, y} be a discrete ADL with 0 as its zero element
defined in 2.2 and L = {0, a, b, c, 1} be the lattice represented by the Hasse dia-
gram given below:

�
�
�

@
@

@

@
@

@

�
�
�

d
d d

d

d
c

a b

1

0
Figure 3: The complete lattice diagram.

Consider D × L = {(t, s) : t ∈ D and s ∈ L}. Then (D × L,∧,∨, 0) is an ADL
under the point-wise operations ∧ and ∨ on D × L and 0 = (0, 0), the zero
element in D × L. Now define η : D × L→ [0, 1] by

η(t, s) =

{
1 if t = 0 and s = 0

0.5 otherwise.

for all (t, s) ∈ D×L. Clearly η is an L−fuzzy ideal of D×L (note that D×L is
not a lattice). Let P = (0, 0) and put η = 0.5P . Thus η is a 2A−L−fuzzy ideal
of D × L but ϕ is not a prime L−fuzzy ideal, since P is a 2A−ideal of D × L
which is not prime ideal; for, (0, a) ∧ (x, b) = (0, 0).

Theorem 4.9. Let η and ϕ be prime L−fuzzy ideals of R. Then η ∩ ϕ is a
2A−L−fuzzy ideal of R.

Proof. For all r ∈ R, (η∩ϕ)(r) = η(r)∧ϕ(r). Suppose η and ϕ are prime L−fuzzy
ideals of R. Let η1, η2 and η3 be L−fuzzy ideals of R such that η1∧η2∧η3 ≤ η∩ψ.
Then η1(r) ∧ η2(r) ∧ η3(r) ≤ η(r) ∧ ψ(r) ⇒ η1(r) ∧ η2(r) ∧ η3(r) ≤ η(r) and
η1(r) ∧ η2(r) ∧ η3(r) ≤ ψ(r)
⇒ η1(r) ∧ η2(r) ≤ η(r) or η3(r) ≤ η(r) or η2(r) ∧ η3(r) ≤ η(r) and
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η1(r) ∧ η2(r) ≤ ψ(r) or η3(r) ≤ ψ(r) or η2(r) ∧ η3(r) ≤ ψ(r),
(since η and ϕ are prime L−fuzzy ideals)
⇒ η1(r) ∧ η2(r) ≤ η(r) and η1(r) ∧ η2(r) ≤ ψ(r), or η3(r) ≤ η(r) and
η3(r) ≤ ψ(r), or η2(r) ∧ η3(r) ≤ η(r) and η2(r) ∧ η3(r) ≤ ψ(r)
⇒ η1(r)∧η2(r) ≤ η(r)∧ψ(r), or η3(r) ≤ η(r)∧ψ(r), or η2(r)∧η3(r) ≤ η(r)∧ψ(r).
Which implies that, η1∧η2 ≤ η∩ψ or η1∧η3 ≤ η∩ψ or η2∧η3 ≤ η∩ψ. Therefore,
η ∩ ψ is a 2A−L−fuzzy ideal of R. □

Example 4.10. Let R = {0, a, b, c, d, e, f, 1} be a lattice whose Hasse diagram
is given below:

Figure 4: The Boolean lattice diagram.

Define L−fuzzy subsets η : R → [0, 1] and ψ : R → [0, 1] by η(0) = η(a) =
1, η(p) = 0 if p ∈ A − {0, a} and ψ(0) = ψ(c) = 1, ψ(p) = 0 if x ∈ A − {0, c}.
From this we have that, η is two valued, η(0) = 1 and η1 = {0, a} is a 2A−ideal
of R. Similarly, ψ is two valued, ψ(0) = 1 and ψ1 = {0, c} is a 2A−ideal of R.
By 4.3, η and ψ are 2A−L−fuzzy ideals of R. Let P = {0, a} and Q = {0, c}.
Then P ∩ Q = {0}. Thus, η1 ∩ ψ1 = P ∩ Q is not a 2A−ideal of R, since
d ∧ e ∧ f = 0 ∈ P ∩ Q but d ∧ e = a /∈ P ∩ Q, d ∧ f = b /∈ P ∩ Q and
e ∧ f = c /∈ P ∩ Q. Thus, χP∩Q is not a 2A−L−fuzzy ideal of R. Therefore,
η ∩ ψ is not a 2A−L−fuzzy ideal of R.

5. Conclusion

This work introduces and derives several findings from the ideas of L−fuzzy
2A−ideal, 2A−L−fuzzy ideal of an almost distributive lattice, and their direct
product. Our next work will concentrate on the Stone space of fuzzy 2A−ideals.
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