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ABSTRACT. In the present paper we introduce the concept on sum of pic-
ture fuzzy ideals of a ['-near ring and the direct sum of picture fuzzy ideals
of a I'-near ring and investigated several properties. Also, we have dis-
cussed their relations of sum and direct sum of picture fuzzy ideals of a
I'-near ring.
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1. Introduction

In 1965, Zadeh [11] has initiated the notion of fuzzy set. Then many re-
searchers were applying it in various branches of Mathematics. The algebraic
system T'-near ring was introduced by Satyanarayana [9]. Later several mathe-
maticians like [1, 2, 5, 6] worked on this algebraic system. The notion of an anti
fuzzy ideals of I'-near-ring was studied by Srinivas et. al., [10]. Kim and Jun
[4] has studied the concept of an anti fuzzy ideals in near-rings. The sum of the
fuzzy ideals of a near-ring was studied by Narasimha Swamy [7]. Now we are
introducing the sum of picture fuzzy ideals of a I'-near-ring and also the sum
of anti picture fuzzy ideals of a I'-near-ring. Also studied the concept of direct
sum in both cases.

2. Preliminaries

A non-empty set N with two binary operations “+” and “-” is said to be a
left near-ring, if it satisfies the following three conditions; () (N, +) is a group
(not necessarily abelian), (i) (N, -) is a semigroup, (iii) I-(m+z) = x-m+1-z for
all [, m,z € N. We will use the word “near-ring” to mean “left near-ring”. We
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denote Im instead of [-m. Moreover, a near-ring IV is said to be a zero-symmetric
if 0-n =0 for all n € N, where 0 is the additive identity in .

Definition 2.1. [9] Let M be a I'-near ring (briefly, TNR). A normal subgroup
(I,+4) of (M,+,T) is called

(i) aright ideal, if {4+ ¢)am —lam e [ forallime M, a €T, i€ I,

(ii) a left ideal, if lai € [ for alll e M, a €T,i e 1,

(iii) an ideal, if it is both a left ideal and a right ideal.

Definition 2.2. [9] A I'-near ring M is said to be a zero symmetric I-near ring
if 0an = 0 for every n € M, a € ', where 0 is the additive identity in M.

A fuzzy set B; on a non-empty A is a mapping B¢ : A — [0,1].

Definition 2.3. [3] A fuzzy set B of a I'-near ring M is called a fuzzy ideal
(briefly, F'I) of M if
(i) Be(l —m) > min{Bc(l), B¢(m)},
(i) Be(m+1—m) > Bc(l),
(iii) Be((I43)am—lam) > B¢(i) (or equivalently, B¢ (zam—lam) > B¢ (z—1
(iv) B¢(lam) > Be(m) for all [,m,z,i € M and a € I'. If B, satisfies (4), (
and (i47) then B is called a fuzzy right ideal of M. If B, satisfies (i), (
and (iv) then B¢ is called a fuzzy left ideal of M.

),
)
)
Definition 2.4. [8] Let B¢ and B,, be two fuzzy ideals of a zero symmetric
I'-near ring M. Then the sum B¢ + B, is a fuzzy subset of M defined by

LR el

3. Sum and direct sum of picture fuzzy ideals

Definition 3.1. A PFS (in a ’'NR M is called a picture fuzzy I' near ring
(briefly, PFTNR) of M if
() Be(l —m) > min(Be (1), Be(m)), Ac(l —m) < max(Ac (1), Ac(m)), Fe(l -
m) < max(F(l), F(m)).
(i) Be(lam) > Bc(m), Ac(lam) < Ac(m), F(lam) < Fe(m).

Definition 3.2. Let (M, +,T) or simply M beaT’'NR. A PFS(ina'NR M
is called a picture fuzzy T ideal (briefly, PFTT) of M if

) Bet = m) > min(Be(b), Bem). Ac(l = m) < mar(AcD), Acm) and

Fe(l - m) < mas(F, (), Fe(m).

(11) Bc(m+l— ) ZBc(l),Ag(m—Fl—m) SAc(l) and Fg(m—Fl— ) Fc(l)

(iii) Be((I +i)am —lam) > Be(1), Ac((I + i)am — lam) < A¢(1) and Fe((I +
i)am — lam) < F¢(i).
(iv) Be(lam) > Be(m), Ac(lam) < A¢(m) and F¢(lam) < Fe(m).
A picture fuzzy subset with the above conditions (¢)-(i4¢) is called a picture

fuzzy T right ideal of M, whereas a picture fuzzy subset with (¢), (i) and (iv)
is called a picture fuzzy I' left ideal of M.
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Definition 3.3. Let ( and n are two picture fuzzy ideals of a zero symmetric
[-near ring M. Then the sum ¢ + 7 is a picture fuzzy set of M defined by,

C+m) = {Sup(min(C(m),n(z))); I —mt 2

0 : otherwise.

Theorem 3.4. If ( and 7 are two picture fuzzy ideals of a zero symmetric I'-near
ring M, then ¢ 4+ 7 is also an picture fuzzy ideal of M.

Proof. Let I,m,z € M and o € T.
(#) Put I =1y + Iy and m = my + mgy where ly,ls, m1, me € M. Then
l—m=1+1ly— (mg +ms2)
=1l —mi+m1+1ls — (m1 + ma).
Now,
(B¢ + By)(l —=m) = (B¢ + By)(li —m1 +ma +la —my —mg2)
= sup{min{(B¢(ly —m1), By(m1 + lo — m1 — ma))}}
> sup{min{min(B¢(l1), B¢(m1)), min(B; (my + l2 — m1), By (m2))}}
> sup{min{min(Be (1), Be(m1)), min(By (12), By (m2)}
> win{sup{min(Be (), Be (1)), sup(min(By(m1), By(ma))}}
— min{ (B¢ + By)(1), (B + By) (m)}.

(Ac+A) (L —m) = (A¢c + Ay)(lh —my +my + 1o —my — ma)
= sup{min{(A¢(l1y —m1), A, (m1 + lo —m1 —m2))}}
< sup{min{max(A¢(l1), A¢c(m1)), max(A,(my + 1o —my), Ay (m2))}}
< sup{min{max(A¢(l1), A¢(m1)), max(Ay(l2), Ay(ma2)) }}
< max{sup{min(A¢(l1), A¢(l2)), sup(min(A, (m1), Ay(ms2)))}}
= max{(A¢ + Ap) (1), (A¢ + Ay)(m)}.
Similarly, (F¢ + F,)(l — m) < max{(F + F,))(1), (F¢c + F,,)(m)}.
(ii) Put I =1y + Iy where l1,l; € M. Then
m+l—m=m+li+la—m=m+li—m+m-+lIlys—m.
(B¢ + By)(m 41 —m) = sup{min(B¢(m + 1y —m), By(m +1s —m))}
> sup{min{ B¢ (l1), By (l2)}}
= (B¢ + By)(D).
(Ac+A)(m+1—m) = sup{min(A¢(m + 11 —m), A,(m+ 1y —m))}
< sup{min(A¢(lr), A, (l2))}
= (A¢ + Ay)(0)-
Similarly, (F¢ + Fy,)(1) < (Fe + F,)(1).
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(iii) Let ¢ = 41 + io where 41,45 € M. Then
(I+)am —lam = (14 i1 +i2)am — (I + i2)am + (I + iz)am — lam.

(Be+By) (1 + i)am — lam)
= sup{min[B¢((l + i1 + t2)am — (L + iz)am), B,((l + iz)am — lam)|}
> sup{min[B¢(i1), By(i2)]}
= (B¢ + By)(0)-

(Ac+A,) (I +i)am — lam)
= (Ac + A){{+ 41 +i2)am — (I + i2)am + (I + i2)am — lam}
sup{min[A¢((I + i1 + i2)am — (I + i2)am), A, ((I + i2)am — lam)|}
sup{min[A¢(ir), Ay (i2)]}
(A + 4,)(0).
Similarly, (F¢ + F,))(({ + i)am — lam) < (F¢ + Fy)(4).
(iv) Put m = my + ma;my, mg € M. Then
(Be + By)(lam) = (B; + By)(la(m; +ms))
= (B¢ + By)(lamy + lams)

IN

= sup{rnin[B< (lamy), Bn(lamQ)]}
> sup{min[B¢(my), B, (m2)]}
= (B¢ + By)(m).

(A¢ + Ap)(lam) = (A¢ + Ay)(la(my +my))
= (A¢ + A,)(lamq + lams)
= sup{min[A¢(lam1), A, (lams)]}
< sup{min[A¢(m1), Ay(m2)]}
= (A¢ + Ay)(m).
Similarly, (F¢ + Fy)(lam) = (F¢ + Fy,))(m).

Hence (¢ + ) is a picture fuzzy ideal of 'NR of M. O
Example 3.5. Let M = {0, a,b,c}, clearly M is a zero symmetric I-near ring.
Define two picture fuzzy sets ¢ = {(I, B¢(l), Ac(1), Fe(1))} and n = {(l, By(1),
Ay(D), Fy (1)} as

BCSM—) [0,1], Ag:M—) [0,1], thM—) [0,1]

B, : M —10,1], A, : M = [0,1] and F,, : M — [0, 1]
Be(0) = 0.7 Ac(0) = 0.02 F(0) = 0.02
Bc(a) = 0.05 AC(CL) =0.6 Fc(a) =0.03
Be(b) = 0.05 Ac(b) = 0.6 F.(b) = 0.3
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Be(e) = 0.05 Ac(c) = 0.6 Fe(c) = 0.3

and,
B:(0) =0.5 A¢(0) = 0.2 F(0) =
B¢(a) =04 Ac(a) =0.3 Fe(a) =0.3
B¢(b) = 0.4 Ac(b) = 0.3 Fe(b) =0.3
Bi(c) =0.4 A¢s(c) =0.3 Fe(c) = 0.3

The routine calculation shows that, ¢ and 7n are picture fuzzy ideals of M.
Now, for any m, z € M,

Bey(0) = \/ {min(Be(m), By(2))}

O0=m+z
= \/{min(B¢(0), B,(0)), min(Bc(a), By(a)), min(B¢(b), B, (b)),
min(B¢(c), By(c))}
=\/{0.5,0.05,0.05,0.05}
=0.5,

Berg(a) = \/ {min(B¢(m),By(2))}

a=m-+z
= \/{min(B¢(0), B,(a)), min(B¢(a), By(0)), min(B¢(b), B(c)),
min(B¢(c), By (b))}
=\/{0.4,0.05,0.05,0.05}
=04,

Bein(b) =\ {min(Bc(m), B,(2))}
b=m-+z

= \/{min(B¢(0), B, (b)), min(B(b), B, (0)), min(B¢ (a), By(c)),
min(Bc¢(c), By(a))}

= \/{0.4, 0.05,0.05,0.05}

=0.4,

Beyy(e) =\ {min(B¢(m), B,(2))}

c=m-+z

= \/{min(BC(O)7 Bﬂ(c>)ﬂ min(Bg(c)7 BW(O))7 min(BC(a)7 Bﬂ(b))7
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min(B¢(b), By(a))}
= \/{0.4,0.05, 0.05,0.05}
=0.4,

Actn(0) = N\ {max(A¢(m), A,(2))}

O=m+z
= A{max(Ac(0), 4,(0)), max(Ac(a), A, (a)), max(Ac(b), Ay (b)),
max(A¢(c), Ay(c))}
= /\{0.2,0.6,0.6,0.6}
=0.2,

Acin(@) = N\ {max(Ac(m), 4,(2))}

a=m-+z
= N{max(4¢(0), A,(a)), max(Ac(a), A,(0)), max(A¢ (), Ay(c)),
max(A¢(c), Ay(b))}
= /\{0.3,0.6,0.6,0.6}
=0.3,

Acrg(®) =\ {max(Ac(m), A, (2))}

b=m-+z
= A{max(Ac(0), 4,(b)), max(Ac(b), A, (0)), max(Ac(a), Ay(c)),
max(A¢(c), Ay(a))}
= /\{0.3,0.6,0.6,0.6}
=0.3,

Acin(@) = N\ {max(A¢(m), Ay(2))}

c=m-+z

= N\{max(A¢(c), 4,(0)), max(Ac(0), Ay (c)), max(Ac(a), Ay (b)),
max(A¢(b), Ay(a))}

= /\{0.6,0.3,0.6,0.6}

=0.3,
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Ferg(0) =\ {max(Fe(m), Fy(2))}

O0=m-+z
= N{max(F(0), F,(0)), max(F¢(a), F,(a)), max(F¢ (b), F (b)),
max(Fe¢(c), Fy(c))}
= /\{0.2,0.370.3,0.3}
=0.2,

Ferg(a) =\ {max(F¢(m), F,(2))}

a=m-+z
= N{max(F¢(0), F,(a)), max(F¢(a), F,(0)), max(F¢ (b), Fy(c)),
max(Fe(c), Fy (b))}
= /\{0.3,0.3,0.3,0.3}
=0.3,

Feag(0) = N\ Amax(Fe(m), Fy(2))}
b=m-+=z

= N{max(F¢(0), F, (b)), max(F¢(b), F;)(0)), max(Fe (a), Fy(c)),
max(Fe(c), Fyy(a))}

= /\{0.3,0.3,0.3,0.3}

=0.3,

Ferg(e) =\ {max(Fe(m), Fy(2))}

c=m-+z
= N{max(F¢(0), F,(c)), max(F¢(c), F;,(0)), max(F (a), F, (b)),
max(Fe(b), Fy(a))}
= /\{0.3,0.3,0.3,0.3}
=0.3,

05:1=0
Therefore, B¢y (1) =
erefore, Beyy(l) {0_4: otherwise.
02:1=0

0.3 : otherwise.

Agty(l) = {
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03:1=0
Fein(l) =
cn(l) 0.3 : otherwise.
The routine calculation shows that, ( 4+ 7 is a picture fuzzy ideal of M.

Now we extend the above Theorem 3.2 to the sum of finite number of fuzzy
ideals of a zero symmetric I'-near-ring M.

Definition 3.6. Let M be a zero symmetric I'-near ring and let (1, (o,...,(,
be the picture fuzzy ideals of a T'-near ring M. For any [ € M, put S(I) =
min{Cl(ll),Cg(lg) .. Cn(ln) =L +1ls+--+ ln7 ZZ S M,’L =1 to n} Define
(Gt Gt et GO = sup SO) = sup{min(Ci(lr), Ga(la), - Galln) © L =
Lh+la+- 41}

Remark 3.1. Let [ =1y + 13+ --- +[,,. Consider a transposition of the indices
(1,k), k> 1. Then
l=li+la+ -+l + e+ 1+ + 1l
=y+lp—m+lh+lo+- -+l + g1+ + 1,
(Where m:ll+l2—|—~~-+lk_1)
=sm+ly—m)+z—z+h+z+l1+- -+
( where z =lo+ -+ + l—1)
=l 4240 +lg1+ .+l (where [y =m+1l—m, I, =—2+1 +2)
=l b+l A g+
Thus
min{Ci (1), C2(l2), - - - Go—1(lk—1)s Ge (1) Cht1 (k1) - -+ Gu(ln) } = min{Ci(Ik),
Galla), s Ch1(lk—1), G (1) Ch1 (Ik41), Cu(ln)} € S(1).

This is true for every transposition (7, ) of the indices. Since every permu-

11 ig e in
we have min{(; (1;1), (2(li2)s -y Cn(lin) } belongs to S(I) for Il =13 + 1o+ -+ - + L.
Hence Gy + o + -+ Gu = G 4 Gz + -+ + Gn.

. " . 12...
tation is a product of transpositions, then for any permutation ( . " )

Theorem 3.7. Let M be a zero symmetric I'-near ring. If (1, (o, ..., (, are the
picture fuzzy ideals of M, then (3 + (2 + - -+ + (, is also a picture fuzzy ideal of
M.

Proof. Put ( = + G+ + (.

() Letl=Ul+l+ +l,m=mi+mot+--+mpy;l;,m; € M, i=1,2,...n.
Thenl—-m=1;+ls+---+1, —mi; —mg—mz—---—m,. This can be expressed
asl—m =1y —my+1ly—my+---+1, —m,,, where [, is a conjugate of [; and m,
is a conjugate of m;. Therefore [ —m = (I; —m}) + (Iy —my) + -+ (I,, — m,,).
Which implies,

Be(l—m)
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= Be((ly —my) + (Iy — my) + - + (I, —m,,))

= sup{min(Bc, (I; — m)), Be,(ly = ma), ... Be, (I, —m,))}

> sup{min(min(B, (I,), B, (my)), min(Be, (Iy), Be, (my)), ... min(Be, (I,),
B, (m )

= min{sup{min(B¢, (1), Be, (), - .- B¢, (1,))}}, sup{min(B, (m1), Bey (ms),

= min{sup S(I), sup S(m)}
— min{Be(1), Be(m)}.

Ac(l —m)
= Ac{(ly —ma) + (I = ma) + -+ + (I, = my,)}
= sup{min(Ac, (I, —m}), A, (Iy — my), ..., Ac, (I, — m,,))}
< sup{min(max(Ac, (Iy), A¢, (m}))), max(Ac, <z’2>, Agy(my)), ..., max(Ag, (I,),
A, (m )}
= max{sup{min(Ac, (1), A¢, (), . . ., Ac, (1,))}}, sup{min(Ac, (m}), Ac, (my),
A, (my)}

= max{A¢(l), Ac(m)}.
Similarly, F, (I —m) < max{F,(l), F;(m)}.
(i) Let imeMandl=lL1+lo+ -+, M, i=12....n
Thenm+l—-m=m+lL+lb+--+lo,—m=y+li—m+m-+lo—m+
m+1ls—m+---4+m+ I, —m. This implies that,
Bi(m+1l—m)=Bc(m+lL—m+m+lo—m+---+m+1, —m)
= sup{min{B;(m + 1y —m), Be(m+1la —m),...,Bc(m+1, —m)}}
< sup{min{ B¢ (l1), B¢(l2), - -, Be(ln) }}
= sup S(I)
= B¢(1).

Acim+1l—m)=Acm+lL —m+m+lo—m+---+m+1, —m)
= sup{min{Ac(m + 11 —m),Ac(m+1la —m),..., Ac(m+1, —m)}}
< supfmin{ A (L), Ac(lz), .., Ac(ln)}}
= sup S(I)
= Ac(0).
Similarly Fe(m +1—m) < Fe(1).
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(iii) Let I,m,i € M and a € T. And let i = iy +io + -+ + in;i; € M,i =
1,2,...,n. Which implies
I+ = (l+i1+ia+ - +ip)am—(ia+iz+- - +ip+)am~+(ia+is+- - -+i,+)am—
(i3+ia+- - +in+l) am+(ig+is+- - -+ip+)am—- - —(in+)am+- - -+ (i, +1)am.
Now,

B:((I +i)am — lam)
=BA{(l+i1+is+ - +in)am— (i +i3+ - +in + )am
+ (ig + i3+ + iy + )am
—(ig+ia+-+in+Dam+ (is+ia+---+i, +)am—...
— (in + )am — lam}
= sup{min{B¢(({ + i1 + 2 + - - +in)am — (ia + i3+ - + iy + )am),
Be((ig +ig+ -+ +in +Dam — (i3 +iq + -+ in + Dam),...
B¢ ((in, + am — lam)}}
> sup{min(Be (i), Be(i2), Belia), - Belin))}
= sup S(I)
= B¢(4).

Ac((I+9)am — lam)
=AA(l+i1+i2+ - +in)am— (o + i3+ -+ in +Dam
+ (ig +i3 + - +in +am
—(ig+ia+-Fin+Dam+ (ig+is+ - +in+Dam+...
+ (in + Dam — lam}
= sup{min{ A (I + 41 +i2 + - -+ ip)am — (I + o + i3 + - - - + in)am),
Ac((l+ig +is+ - +in)am — (I +is+ig+- - +in)am), ...,
Ac((in +)am —lam)}}
< sup{min(A¢(i1), A¢(i2), Ac(i3), - .-, Ac(in)) }
= sup S(I)
= Ac(1).
Similarly Fe((I +i)am — lam) = F¢(i).
(iv) Let im e M and a € . Put m = my +mao + -+ + my;m; € M,i =
1,2,...,n. Then
B:(lam) = Be(la(mq +mao + - - +my,))
= Bc(lami+ = amg + - - - + lamy,)
= sup{min(B¢(lamy), B¢(lams), ..., B¢(lamy))}
< sup{min(B¢(m1), B¢(m2), ..., Bc(my))}
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= sup S(m)

Ac(lam) = Ac(la(my +ma + -+ -+ my,))
= Ac(lamq + lamg + - - - + lamy,)
= sup{min(A¢(lam1), A¢c(lamy), ..., Ac(lamy,))}
< sup{min(Ac(my), Ac(ms)..., Ac(mn))}
= sup S(m)
= Ac(m).

Similarly Fe¢(lam) < F¢(m). Hence B¢ is a picture fuzzy ideal of M. O

Definition 3.8. Let M be a zero symmetric I' -near ring and (1, (s,...,(, be
the picture fuzzy ideals of M. Then the sum ¢ = (3 + (3 + -+ + (, is said to be
direct, if

min{(B¢, + Be, +-+++ Bg,-1+ B+ + B, ), B, } = 0

max{(A¢, + A, +- -+ A1+ Ag 1+ + Ag, ), Ag b =0

max{(Fgl +FC2+"'+F411*1+FC1'+1+”'+FCn)’F€7:}:O
Theorem 3.9. Let M = M & M5 & - - - ® M, be the direct sum of I'-near rings
My, My, ..., M, with left or right identity e = (e1,ea, ..., e,) and ¢ be a picture
fuzzy ideal of M. Then there exists picture fuzzy ideals (1, (s, ..., (, of M such
that (= @GP - D (n-

Proof. Let I; = (0,0,...,0,1;0,...,0) and e¢; = (0,0,...,0,¢;,0,...,0),a €T.
Then for | = (I1,1la,...,0p) =11 + 1o + -+ - + 1, we have
Bc(l) = B((h +lo+---+ ln) > min{BC(ll),Bc(lg), o 7B((ln)}
AC(Z) = A((ll +ly+ -+ ln) < maX{Ac(ll),AC(lg), . ,A< ln)}
Fc(l) = Fg(ll +lo+ -+ ln) < max{FC(ll)7Fg(lg), .. .,Fg(l

n)}-
But
B¢ (li) = B¢(eial) > Be(1),
Ac(li) = A¢(eial) < Ac(l),
Fe(l;) = Fe(eial) < Fe(1),

fori=1,2,...,n. That is,
min{B¢(l1), B¢(l2), ..., B¢(ln)} > Be(l),
max{Ac(l), Ac(l2), ., Ac(la)} < Ac(),
max{F¢(l), Fe(l2), .., Fe(ln)} < Fe(1).
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Thus
Be(l) < min{B¢(lh), B¢(l2), - - Be(ln)},
Ac(l) =z max{A¢(lh), Ac(l2), - .., Ac(ln)},
Fe(l) = max{Fe(h), Fella), -, Fe(l)}.

B (l) = {Bc(l) e M;

0 : otherwise
A1) : 1 e M;
0 : otherwise
Fe(l): 1l e M;
Fci(Z>={O<,() )
:  otherwise.
Hence 1 © G @+ DG =C. U

4. Conclusion

In this paper, we have introduced the concept on sum of picture fuzzy ideals
of a I'-near ring and the direct sum of picture fuzzy ideals of a I'-near ring and
investigated several properties. Also, the relations between sum and direct sum
of picture fuzzy ideals of a I'-near rings are also discussed. Further, this can
extend to sum of anti picture fuzzy ideals of a I'-near ring and the direct sum of
anti picture fuzzy ideals of a I'-near ring in future research work.
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