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1. INTRODUCTION 
 

High-temperature superconductors (HTS), owing to 

their high critical current capacity and ability to operate 

without liquid helium, are increasingly being applied in 

various electrical applications, such as high-field direct 

current magnets, superconducting synchronous motors, 

and particle accelerators [1]. Although HTS can achieve 

performance levels unattainable by other conductors, the 

high cost of the HTS wire can increase the overall system 

cost. Therefore, it is essential to optimize the design of 

HTS-based electrical systems to meet the required 

specifications while minimizing the use of HTS wire. 

Various optimization-based design studies for HTS 

magnets, including those utilizing genetic algorithms (GA) 

[2-4], have been conducted, and many direct current 

magnet systems based on such designs are operating 

successfully [5-7]. However, in cases such as ultra-high 

magnetic field magnets, where the large number of coil 

modules greatly increases the computation time for critical 

current calculation during the design phase, or when the 

design incorporates three-dimensional structures or 

nonlinear elements like iron cores, which necessitate finite 

element analysis (FEM), the application of optimization 

techniques requiring thousands or even tens of thousands 

of iterations can be particularly challenging.  

In the design of HTS magnet systems, it is expected that 

time for design process can be significantly reduced by 

employing regression-based machine learning techniques.  

 By replacing computationally expensive magnetic and 

mechanical analyses with trained virtual prediction models 

that yield nearly equivalent results but require significantly 

less computation time, the overall efficiency of the design 

process can be greatly improved [8-11]. In this paper, we 

propose an optimized design method for HTS magnets 

based on regression machine learning models. To develop 

a performance prediction model for HTS magnets, a virtual 

prediction machine learning model is created by acquiring 

a training dataset that requires far fewer analyses than 

would be needed in a purely optimization-based design 

process. The purpose of this study is to shorten the 

optimization time by replacing the time-consuming 

analysis steps with the prediction machine learning model 

during the actual optimization process, while still 

achieving results comparable to those of conventional 

design methods. To verify the feasibility of the proposed 

design method, a 2 T-class HTS magnet composed of 

multiple double-pancake coils (DPC) was designed 

employing the regression machine learning model, and the 

results demonstrate the performance of the proposed 

method. 

 

 

2. OPTIMIZED DESIGN PROCESS EMPLOYING 

REGRESSION-BASED MACHINE LEARNING 

 

2.1. The main structure of the overall algorithm 

The overall design process is divided into two main step: 

(1) training a magnet performance prediction model using 

actual analysis data, and (2) conducting optimization 

design based on the trained prediction model. Fig. 1 shows 
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the difference between previous optimization process and 

the proposed machine learning based process.  

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 1. Magnet design process of the (a) previous 

optimization method and the (b) proposed method. 

As represented in Fig. 1, previous optimization methods 
[2,3] involve directly calculating the magnet characteristics 

to calculate the objective function and determine any 
constraint violations. If this calculation is time-intensive, it 
can substantially extend the overall design process. In 
contrast, the method proposed in this study replaces the 
evaluation of the objective function and the determination 
of constraint violations, which were previously performed 

through direct analysis of the magnet, with a pre-trained 
regression-based virtual prediction model. This 
substitution allows for obtaining comparable results while 
significantly reducing computation time. Of course, to 
create a magnet performance prediction model, a training 
dataset consisting of HTS magnet performance data under 

various design conditions is essential. To obtain this data, 
a certain amount (significantly fewer than the number of 
analyses performed in conventional optimization methods) 
of actual magnet analysis must be repeatedly implemented. 
That is, for arbitrary design variables, characteristics such 
as the central magnetic field and critical current of the 

magnet must be obtained using analytical techniques or 
finite element methods, and these values must be compiled 
into a dataset. The dataset is composed of X-data, 
representing the design variables, and Y-data, which 
corresponds to the magnet's characteristics associated with 
those design variables. By training a machine learning 

model using the X and Y data, a model can be obtained that 
quickly computes the magnet's performance, represented 
by Y, through regression theory, without the need for 
actual magnet analysis when an arbitrary X value is input 
[8-11]. After the machine learning model for predicting the 
characteristics of the magnet is developed, the optimization 

design process remains the same as previous methods, 
except that the calculations of magnet characteristics are 
carried out using the machine learning regression model 
rather than direct analysis. 
 

2.2. Magnet performances prediction model using eXtreme 

Gradient Boosting (XGBoost) algorithm 

We have chosen XGBoost as the machine learning 

model to predict the continuous values of the magnet's 

characteristics based on various design variables. XGBoost 

is a decision-tree-based ensemble machine learning 

algorithm that uses boosting to improve predictive 

accuracy. It operates by sequentially building a set of weak 

learners, typically decision trees, where each new tree 

corrects errors made by the previous ones. XGBoost 

optimizes a custom loss function through gradient descent, 

adding trees until no further significant improvement is 

achieved [8-11]. While deep learning-based regression 

models are also viable, XGBoost is more suitable for 

achieving the goals of the proposed method. This is 

because the optimal amount of training data for this task 

ranges between 1,000 and 2,000, and for such a relatively 

small dataset, XGBoost tends to provide better prediction 

accuracy compared to deep learning models. 

 

 

3. DESIGN OF A 2-TESLA CLASS HTS MAGNET 

EMPLOYING THE PROPOSED METHOD  

 

3.1. Design Specifications of the 2 T class HTS magnet 
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 The HTS wire used in the design is SuNAM ReBCO 

tape, with a thickness of 0.14 mm and available in two 

widths: 4.1 mm and 6.1 mm. To protect the magnet, a 

50 μm thick Stainless steel tape is co-wound together, 

resulting in a total thickness of approximately 0.19 mm per 

turn. And it is assumed that the HTS magnet composed of 

DPCs operates at 20 K using a conduction cooling method. 

The objective function of the 2 T-class HTS magnet is the 

consumed HTS wire length and the two nonlinear 

constraints are: 1) center magnetic field > 2 T and, 2) the 

operating current value should be less than 70% of the 

minimum critical current of the magnet when the operating 

current is applied. There are five design variables related 

with the magnet specifications. The Fig. 2 shows the design 

variables, objective function and nonlinear constraints of 

the HTS magnet.  

 

3.2. Magnet characteristics prediction model training 

 Approximately 2,000 unique design variable 

combinations (X-data), evenly distributed across the 

design variable range, were generated. Using the actual 

magnet model, the central magnetic field, minimum critical 

current current, and total wire length (Y-data) 

corresponding to each set of design variables were 

calculated to prepare the training data. The prediction 

model was trained using the 2,000 data-sets in google 

Colab environment. The XGBoost library with the 

GridSearchCV library for hyper-parameter tuning was 

applied to train the magnet characteristics prediction model.  

Model training was carried out using 1,760 data points, 

which account for approximately 88% of the total data, 

while the remaining data was reserved for validation after 

the model was created. 

After completing the model training, the performance of 

the predictive model was evaluated using the reserved 

validation data (240 data) to confirm how accurately it 

predicted the magnet characteristics. As a result, an 

average difference of approximately 0.008 T in the central 

magnetic field and around 0.126 A in the critical current 

was observed. The detailed differences between the actual 

calculated values and the predicted for 240 validation data 

points are shown in Fig. 3. Since the two values are nearly 

identical, it is possible to evaluate the characteristics of the 

magnet using predictions from this virtual model without 

performing actual magnet analysis in the optimization 

process. The small differences in the Fig. 3 are influenced 

by factors such as the amount of data used for training and 

the hyper-parameters of the machine learning model.  

 

3.3. Optimization process with the prediction model 

 The optimized magnet design process using the 

prediction model was also implemented in the Google 

Colab environment, utilizing the PyGAD library for GA 

optimization. The number of generations for the GA was 

set to 100, and the population size to 60. The part that 

calculates the characteristics of the magnet was replaced 

with the proposed prediction model for optimization, and 

the design results are represented in TABLE I.  
The specifications of the computer used for computation 

are as follows: 1) CPU: Intel I9-11900K @ 3.50GHz, and 

2) GPU: NVIDIA GeForce RTX 3080. 

 
 

Fig. 2. The five design variables (X-data), objective 

function and constraints (Y-data) of the HTS magnet. 

 
TABLE I 

SPECIFICATIONS OF THE DESIGNED 2 T HTS MAGNET WITH THE 

PROPOSED METHOD. 

Parameters Value 

Design variables [2, 5, 3, 42, 0] 

Center field  2.0 [T] 

Ic(min) @ Iop  350.3 [A] 

Wire consumption < 871.4 [m] 

Computation time  < 3000 [s]  

 
The design results obtained using the proposed method 

were analyzed with COMSOL to validate the performance 

of the design approach as shown in Fig 4. It can be 

confirmed that the calculated center field and minimum 

critical current values at the operating current from the 

COMSOL results are similar to the results from the magnet 

characteristics prediction model applied in the proposed 

design method (TABLE I). 

Note that the entire process was completed in under 

3,000 seconds, with approximately 2,000 seconds spent on 

collecting training data, 900 seconds on training and tuning 

the machine learning model, and around 10 seconds for the 

actual optimization process using the prediction model. 

The reason the design process was able to proceed so 

quickly is that, during the optimization, the magnet’s 

characteristics were not analyzed directly. Instead, a 

prediction model, which takes less than a millisecond, was 

used. When calculating the magnet's characteristics 
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(a) 

 
(b) 

 

Fig. 3. Comparison graphs between the actual calculated 

results and the prediction results of (a) the center field and 

(b) the minimum critical current, obtaining from the 240 

validation data. 

 

analytically, the magnetic field values must be computed 

at three points for each HTS turn (the center and both ends), 

converted into the field's strength and angle, and then 

applied to the interpolation formula (SuNAM Ic data @ 20 

K) for various wire angles and amplitudes to determine the 

critical current. This process is very time-consuming, and 

for a 2 T-class model, it typically takes more than one 

second per an analysis. If optimization is performed under 

the same conditions using the method of directly 

calculating the magnetic field characteristics, the 

computation time is expected to exceed 6,000 seconds 

arithmetically.  

For a practical comparison with previous design 

methods, the same design was carried out in a MATLAB 

environment with the conventional GA library where the 

characteristics of the magnet could be directly calculated. 

Through the comparative design process, results were 

obtained after approximately 10,000 seconds, with a 

central magnetic field of 2.01 T, a minimum critical current 

of 345.5 A, and a total wire consumption of 865.7 m. 

Although the two design results were nearly identical, it 

was observed that the computation time of the proposed 

method was about only 30% of that of the previous method. 

Furthermore, if the magnet's characteristics are analyzed 

using finite element method, each analysis can take tens of 

seconds to several minutes, and in such cases, the whole 

optimal design process could take several days. 

 
(a) 

 
(b) 

 

Fig. 4. Finite element method (COMSOL) results of the 2 

T HTS magnet designed from the proposed design method: 

(a) center field, (b) minimum critical current. 
 

 

 

4. CONCLUSION 

 

This paper presents an optimized design method for 

HTS magnets based on machine learning regression 

techniques. The proposed design method has the advantage 

of significantly reducing computation time by replacing the 

time-consuming analysis of HTS magnet characteristics 

with a pre-trained regression model, allowing for similar 

results during optimization while drastically cutting down 

the computation time. To validate the performance of the 

proposed method, it was applied to predict the magnet 

characteristics of a 2 T HTS magnet operating at 20 K. 

After training the XGBoost regression model with 1,760 

training data, its predictive performance was evaluated 

using 240 validation data. The results demonstrated very 

small errors, with an average deviation of about 0.008 T for 

the central magnetic field and 0.126 A for the minimum 

critical current. These results demonstrate that, during the 

optimization process, it is possible to quickly predict the 

magnet characteristics using a regression model, without 

the need to perform the time-consuming calculations 

directly. The proposed regression model was applied to a 

GA for optimal design, resulting in the design of a 2 T 

magnet with a 150 mm bore using approximately 870 

meters of HTS wire based on a 4.1 mm standard. The 

computation time was less than half of what would have 
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been required without this method. Furthermore, if this 

approach were applied to models that include nonlinear 

elements such as iron cores or require 3D finite element 

method, the reduction in computation time is expected to 

be significantly greater. 
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