DOI QR코드

DOI QR Code

Description of 41 unrecorded bacterial species in Korea, isolated from freshwater in 2021

  • Jung-Hun Jo (Department of Biotechnology, Hankyong National University) ;
  • Seung-Bum Kim (Department of Microbiology, Chungnam National University) ;
  • Ji-Eun Im (Department of Biotechnology, Hankyong National University) ;
  • Se-Yoon Chun (Department of Biotechnology, Hankyong National University) ;
  • Wan-Taek Im (Department of Biotechnology, Hankyong National University)
  • Received : 2022.12.19
  • Accepted : 2024.02.22
  • Published : 2024.11.30

Abstract

Here we describe indigenous prokaryotic species in Korea, a total of 41 bacterial strains were isolated from freshwater from the Republic of Korea. From the high 16S rRNA gene sequence similarity (>98.7%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to predefined bacterial species. There is no official report that these 41 species belonged to 5 phyla, 10 classes, 18 orders, 23 families, and 29 genera, which were assigned to Streptomyces, Mycolicibacterium, Smaragdicoccus, Nocardiopsis, and Nocardia of the phylum Actinobacteria; Runella, Flavobacterium, Algoriphagus, Sphingobacterium, and Aequorivita of the phylum Bacteroidota; Paenibacillus, Bacillus, Metabacillus, and Fredinandcohnia of the phylum Firmicutes; Sphingobium, Erythrobacter, Duganella, Methylopila, Novosphingobium, Azospirillum, Simplicispira, Corallococcus, Pseudomonas, Devosia, Pseudorhodoferax, Pseudomonas, Prolinoborus, Pectobacterium, and Aquabacterium of the phylum Proteobacteria; Proshecobacter of the phylum Verrucomicrobia. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are also described in the species description section.

Keywords

Acknowledgement

This research was supported by the "Survey of freshwater organisms (Prokaryotes)" (NNIBR202101204) research program of the Nakdonggang National Institute of Biological Resources.

References

  1. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783-791.
  2. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
  3. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press, Cambridge, New York.
  4. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol .35:1547-1549.
  5. Lane, D.J. 1991. 16S/23S rRNA sequencing. In: Stackebrandt, E. and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics. Wiley, New York, USA.
  6. Mukherjee, S., D. Stamatis, C.T. Li, G. Ovchinnikova, J. Bertsch, J.C. Sundaramurthi, M. Kandimalla, P.A. Nicolopoulos, A. Favognano, I.A. Chen, N.C. Kyrpides and T.B.K. Reddy. 2022. Twenty-five years of Genomes OnLine Database (GOLD): data updates and new features in v.9. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac974
  7. Newton, R.J., S.E. Jones, A. Eiler, K.D. McMahon and S. Bertilsson. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75:14-49.
  8. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4):406-425.
  9. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882.
  10. Wetzel, R.G. 2001. Limnology: lake and river ecosystems: Gulf Professional Publishing.
  11. Yoon, S.H., S.M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo and J. Chun. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617.