과제정보
IITP funded by the Korea government (MSIT) (No. 2022-0-00907) and also by the National Research Foundation of Korea (2022R1C1C1010766).
참고문헌
- S. Jung and J. Kim, Adaptive and stabilized real-time superresolution control for uav-assisted smart harbor surveillance platforms, J. Real-Time Image Process. 18 (2021), 1815-1825. https://doi.org/10.1007/s11554-021-01163-2
- J. Wang, J. Liu, and N. Kato, Networking and communications in autonomous driving: a survey, IEEE Commun. Surv. Tutorials 21 (2019), no. 2, 1243-1274. https://doi.org/10.1109/COMST.2018.2888904
- Y. Zheng, S. Eben Li, J. Wang, D. Cao, and K. Li, Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies, IEEE Trans. Intell. Transp. Syst. 17 (2016), no. 1, 14-26. https://doi.org/10.1109/TITS.2015.2402153
- S. Aradi, Survey of deep reinforcement learning for motion planning of autonomous vehicles, IEEE Trans. Intell. Transp. Syst. 23 (2022), no. 2, 740-759. https://doi.org/10.1109/TITS.2020.3024655
- S. Jung, W. J. Yun, J. Kim, and J.-H. Kim, Infrastructureassisted cooperative multi-UAV deep reinforcement energy trading learning for big-data processing, (International Conference on Information Networking (ICOIN), Jeju, Republic of Korea), 2021, pp. 159-162.
- L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and X. Shen, Deep reinforcement learning for autonomous internet of things: model, applications and challenges, IEEE Commun. Surv. Tutorials 22 (2020), no. 3, 1722-1760. https://doi.org/10.1109/COMST.2020.2988367
- X. Pan, B. Chen, S. Timotheou, and S. A. Evangelou, A convex optimal control framework for autonomous vehicle intersection crossing, IEEE Trans. Intell. Transp. Syst. 24 (2023), no. 1, 163-177.
- M. Choi, J. Kim, and J. Moon, Wireless video caching and dynamic streaming under differentiated quality requirements, IEEE J. Sel. Areas Commun. 36 (2018), no. 6, 1245-1257. https://doi.org/10.1109/JSAC.2018.2844980
- J. Kim, G. Caire, and A. F. Molisch, Quality-aware streaming and scheduling for device-to-device video delivery, IEEE/ACM Trans. Netw. 24 (2016), no. 4, 2319-2331.
- J. Koo, J. Yi, J. Kim, M. A. Hoque, and S. Choi, Seamless dynamic adaptive streaming in LTE/Wi-Fi integrated network under smartphone resource constraints, IEEE Trans. Mobile Comput. 18 (2019), no. 7, 1647-1660.
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, Playing atari with deep reinforcement learning, arXiv preprint, 2013, arXiv: 1312.5602.
- S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, A survey of deep learning techniques for autonomous driving, J. Field Robot. 37 (2020), no. 3, 362-386.
- X. Tan, L. Zhou, H. Wang, Y. Sun, H. Zhao, B.-C. Seet, J. Wei, and V. C. M. Leung, Cooperative multi-agent reinforcementlearning-based distributed dynamic spectrum access in cognitive radio networks, IEEE Internet Things J. 9 (2022), no. 19, 19477-19488. https://doi.org/10.1109/JIOT.2022.3168296
- S. Sukhbaatar, A. Szlam, and R. Fergus, Learning multiagent communication with backpropagation, (Proc. of Advances in Neural Information Processing Systems (NEURIPS), Barcelona, Spain), 2016, pp. 2244-2252.
- M. Shin, D.-H. Choi, and J. Kim, Cooperative management for PV/ESS-enabled electric vehicle charging stations: a multiagent deep reinforcement learning approach, IEEE Trans. Ind. Inform. 16 (2020), no. 5, 3493-3503. https://doi.org/10.1109/TII.2019.2944183
- A. P. Cohen, S. A. Shaheen, and E. M. Farrar, Urban air mobility: history, ecosystem, market potential, and challenges, IEEE Trans. Intell. Transp. Syst. 22 (2021), no. 9, 6074-6087. https://doi.org/10.1109/TITS.2021.3082767
- S. Jung, W. J. Yun, M. Shin, J. Kim, and J.-H. Kim, Orchestrated scheduling and multi-agent deep reinforcement learning for cloud-assisted multi-UAV charging systems, IEEE Trans. Veh. Technol. 70 (2021), no. 6, 5362-5377. https://doi.org/10.1109/TVT.2021.3062418
- Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, 6G wireless networks: vision, requirements, architecture, and key technologies, IEEE Veh. Technol. Mag. 14 (2019), no. 3, 28-41.
- W. J. Yun, S. Park, J. Kim, M. Shin, S. Jung, D. A. Mohaisen, and J.-H. Kim, Cooperative multiagent deep reinforcement learning for reliable surveillance via autonomous multi-UAV control, IEEE Trans. Ind. Inform. 18 (2022), no. 10, 7086-7096. https://doi.org/10.1109/TII.2022.3143175
- X. Cao, J. Zhang, and H. V. Poor, A virtual-queue-based algorithm for constrained online convex optimization with applications to data center resource allocation, IEEE J. Sel. Topics Signal Process. 12 (2018), no. 4, 703-716. https://doi.org/10.1109/JSTSP.2018.2827302
- T. Chen, Q. Ling, and G. B. Giannakis, An online convex optimization approach to proactive network resource allocation, IEEE Trans. Signal Process 65 (2017), no. 24, 6350-6364. https://doi.org/10.1109/TSP.2017.2750109
- K. Tan, L. Feng, G. Dan, and M. Torngren, Decentralized convex optimization for joint task offloading and resource allocation of vehicular edge computing systems, IEEE Trans. Veh. Technol. 71 (2022), no. 12, 13226-13241. https://doi.org/10.1109/TVT.2022.3197627
- P. S. Pillai and S. Rao, Resource allocation in cloud computing using the uncertainty principle of game theory, IEEE Syst. J. 10 (2016), no. 2, 637-648. https://doi.org/10.1109/JSYST.2014.2314861
- W. Yuan, P. Wang, W. Liu, and W. Cheng, Variable-width channel allocation for access points: a game-theoretic perspective, IEEE Trans. Mobile Comput. 12 (2013), no. 7, 1428-1442. https://doi.org/10.1109/TMC.2012.109
- E. Maskin, Auctions and efficiency, School of Social Science, Institute for Advanced Study, 2001.
- M. Shin, J. Kim, and M. Levorato, Auction-based charging scheduling with deep learning framework for multi-drone networks, IEEE Trans. Veh. Technol. 68 (2019), no. 5, 4235-4248. https://doi.org/10.1109/TVT.2019.2903144
- X. Wang, X. Chen, and W. Wu, Towards truthful auction mechanisms for task assignment in mobile device clouds, (IEEE Infocom 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA), 2017, pp. 1-9.
- L. Park, S. Jeong, J. Kim, and S. Cho, Joint geometric unsupervised learning and truthful auction for local energy market, IEEE Trans. Ind. Electron. 66 (2018), no. 2, 1499-1508.
- L. Park, S. Jeong, D. S. Lakew, J. Kim, and S. Cho, New challenges of wireless power transfer and secured billing for internet of electric vehicles, IEEE Commun. Mag. 57 (2018), no. 3, 118-124.
- W. Sun, J. Liu, Y. Yue, and H. Zhang, Double auction-based resource allocation for mobile edge computing in industrial internet of things, IEEE Trans. Indust. Inform. 14 (2018), no. 10, 4692-4701. https://doi.org/10.1109/TII.2018.2855746
- N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, Optimal auction for edge computing resource management in mobile blockchain networks: a deep learning approach, (IEEE International Conference on Communications, Kansas City, MO, USA), 2018, pp. 1-6.
- K. Zhu, Y. Xu, Q. Jun, and D. Niyato, Revenue-optimal auction for resource allocation in wireless virtualization: a deep learning approach, IEEE Trans. Mobile Comput. 21 (2020), no. 4, 1374-1387.
- R. B. Myerson, Optimal auction design, Math. Oper. Res. 6 (1981), no. 1, 58-73. https://doi.org/10.1287/moor.6.1.58
- H. Daniels and M. Velikova, Monotone and partially monotone neural networks, IEEE Trans. Neural Netw. 21 (2010), no. 6, 906-917. https://doi.org/10.1109/TNN.2010.2044803
- S. Say, H. Inata, J. Liu, and S. Shimamoto, Priority-based data gathering framework in uav-assisted wireless sensor networks, IEEE Sensors J. 16 (2016), no. 14, 5785-5794. https://doi.org/10.1109/JSEN.2016.2568260
- D. Van Huynh, T. Do-Duy, L. D. Nguyen, M.-T. Le, N.-S. Vo, and T. Q. Duong, Real-time optimized path planning and energy consumption for data collection in unmanned ariel vehicles-aided intelligent wireless sensing, IEEE Trans. Ind. Inform. 18 (2021), no. 4, 2753-2761.
- C. Zhan, Y. Zeng, and R. Zhang, Energy-efficient data collection in UAV enabled wireless sensor network, IEEE Wirel. Commun. Lett. 7 (2017), no. 3, 328-331.
- J. Gong, T.-H. Chang, C. Shen, and X. Chen, Flight time minimization of uav for data collection over wireless sensor networks, IEEE J. Sel. Areas Commun. 36 (2018), no. 9, 1942-1954. https://doi.org/10.1109/JSAC.2018.2864420
- C. Singhal and B. N. Chandana, Aerial-SON: UAV-based selforganizing network for video streaming in dense urban scenario, (International Conference on Communication Systems & Networks (COMSNETS), Bangalore, India), 2021, pp. 7-12.
- V. Krishna, Auction theory, Academic press, 2009.
- P. Klemperer, Auction theory: a guide to the literature, J. Econ. Surv. 13 (1999), no. 3, 227-286. https://doi.org/10.1111/1467-6419.00083
- B. Dai, H. Chen, and G. Yang, Price-setting based combinatorial auction approach for carrier collaboration with pickup and delivery requests, Oper. Res. 14 (2014), 361-386.
- D. C. Marinescu, A. Paya, J. P. Morrison, and P. Healy, An auction-driven self-organizing cloud delivery model, arXiv preprint, 2013, arXiv:1312.2998.
- B. Coltin and M. Veloso, Online pickup and delivery planning with transfers for mobile robots, (IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China) 2014, pp. 5786-5791.
- J. He, D. Zhang, Y. Zhou, and Y. Zhang, A truthful online mechanism for collaborative computation offloading in mobile edge computing, IEEE Trans. Ind. Inform. 16 (2019), no. 7, 4832-4841.
- H. Lee, S. Jung, and J. Kim, Truthful electric vehicle charging via neural-architectural myerson auction, ICT Express 7 (2021), no. 2, 196-199. https://doi.org/10.1016/j.icte.2021.03.009
- K. Kuo, A. Ostuni, E. Horishny, M. J. Curry, S. Dooley, P. Chiang, T. Goldstein, and J. P. Dickerson, ProportionNet: balancing fairness and revenue for auction design with deep learning, arXiv preprint, 2020, arXiv:2010.06398.