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Abstract

Internet of things (IoT) is commonly employed to detect different kinds of

diseases in the health sector. Systemic lupus erythematosus (SLE) is an

autoimmune illness that occurs when the body’s immune system attacks its

own connective tissues and organs. Because of the complicated

interconnections between illness trigger exposure levels across time, humans

have trouble predicting SLE symptom severity levels. An effective automated

machine learning model that intakes IoT data was created to forecast SLE

symptoms to solve this issue. IoT has several advantages in the healthcare

industry, including interoperability, information exchange, machine-

to-machine networking, and data transmission. An SLE symptom-predicting

machine learning model was designed by integrating the hybrid marine

predator algorithm and atom search optimization with an artificial neural

network. The network is trained by the Gene Expression Omnibus dataset as

input, and the patients’ data are used as input to predict symptoms. The

experimental results demonstrate that the proposed model’s accuracy is higher

than state-of-the-art prediction models at approximately 99.70%.
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1 | INTRODUCTION

Internet of things (IoT) is a popular communication tech-
nology that has the potential to transform many aspects of
our daily lives. This “new frontier” comprises various tech-
niques that enable the intelligent operation of everyday
objects, owing to the integration of sensors, low-power
computing, and wireless communications. Such devices
(e.g., clocks, smart bracelets, air conditioners, umbrellas,
and refrigerators) maintain their own control and trans-
mission capabilities. Furthermore, they can accept data

input from multiple people and even other appliances,
passing the compiled data to the internet for collection
and analysis. Such scenarios have led to the idea of “ubiq-
uitous computing” [1], which would allow hidden
machines to perform scientific reasoning about human liv-
ing conditions without knowing the identity or personality
of the persons being evaluated [2]. Over time, the number
of IoT devices and their applications are anticipated to
increase [3], as their configurations and utility are already
more efficient than employing dedicated high-power
phones, laptops, tablets, and medical devices [4].
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Recently, IoT systems, including wearable devices,
have been made available for healthcare purposes [5, 6],
as they provide the ability to capture necessary informa-
tion about the user’s vital signs and surroundings in near
real-time [7, 8]. These medical-related services must be
accompanied by reliable machine learning models and
robust data that produce outputs compatible with extant
medical systems [9, 10]. Hence, by monitoring the health
of patients, remote healthcare is expected to soon to
become widely accessible, most likely with distributed
cloud-based processing capabilities [11–13]. Therefore,
IoT healthcare, learning, and travel support capabilities
are becoming increasingly popular in real-world applica-
tions [14]. These approaches improve user comprehen-
sion by allowing users to selectively choose new services
selectively, based on their context and profile informa-
tion. Notably, these enabling technologies must be
designed and deployed with patient safety, privacy, and
security in mind [15, 16], as governments and society will
not tolerate IoT solutions that place citizens and
increased risk and fall short of the performance standards
set by cutting-edge medical practice.

To prepare for ubiquitous IoT-based healthcare sys-
tems, several new algorithms and wearable sensors are
being developed in various forms for telemedicine services,
hospital screening, healthcare for the elderly, and in-home
medical treatment [17–19]. This is the right direction as
long as it is accompanied by resilient connectivity methods
that allow quick access to medical decisions and essential
prophylactic measures. Extensive research has been con-
ducted on the best criteria for deploying and sustaining
such services, as they require certain intelligent conflict-
resolution protocols that are currently lacking.

Interestingly, with rapid advancements, researchers
have recently focused on specific areas of healthcare to
prepare them for eventual IoT integration. Based on the
authors’ backgrounds and their work with medical sys-
tems in the past, systemic lupus erythematosus (SLE) pre-
diction lacks the appropriate machine learning decision
support needed for eventual IoT healthcare integration.
SLE is a dangerous and sometimes fatal autoimmune dis-
ease that affects approximately five million individuals
worldwide. When stricken by SLE, the body’s immune
system targets its own connective tissues and organs, lead-
ing to debilitating and often fatal consequences. There-
fore, patients must recognize and restrict their exposure to
environmental and biometric triggers that have the poten-
tial to generate these reactions. However, the complexity
of the disease and its symptoms is very difficult to predict,
and the causes seem to change over time. Many patients
perceive this complexity as unmanageable and terrifying.
Hence, the emotional burden alone can become crippling.

“It is natural to feel unhappy, frustrated, angry, or
depressed when you have symptoms that come and go,

illness flares and remissions, and the uncertainty of what
each day will bring.”

According to studies, 15%–60% of people with chronic
illnesses (e.g., SLE) will develop clinical depression at
some point throughout their condition [20]. One way to
help alleviate the emotional burden is to deploy a tech-
nology that can intelligently predict SLE symptom sever-
ity levels accurately and automatically in near real-time.
Doing so would help patients not only manage their
symptoms by predicting and avoiding triggers but also
would also help them lead reasonably normal lives.

To pave the way for this objective, this study provides
a machine learning SLE prediction model that combines
the marine predator algorithm (MPA) and atom search
optimization (ASO) into an artificial neural network
(ANN) that intakes IoT data from SLE patients. The
model is trained using the Gene Expression Omnibus
(GEO) dataset, and the MPA–ASO ANN predicts patient
triggers based on their current activities and input signals.
Patient details are uploaded anonymously to the internet
for easy access, data transfer, processing, and security.

The experimental results show that the proposed
model provides better performance with a much lower
low mean square error (MSE) than generic state-of-the-art
models. This effort and the results are fully explained in
the remainder of this paper, which is organized as follows.
The associated efforts in this field are described in
Section 2, and Section 3 presents the preliminaries of the
proposed methodology and model. The suggested work-
flow and machine learning techniques are described in
Section 4. Section 5 discusses the experimental findings,
and Section 6 concludes this paper.

2 | LITERATURE REVIEW

Recent improvements in healthcare systems have
resulted in the development of attractive new smart
healthcare applications. In medical industries, various
new low-power and lightweight sensors have been pro-
duced that can accurately analyze and transmit vital
human biometric indicators (e.g., pulse rate, body pres-
sure, temperature, and oxygen levels). Researchers have
leveraged these sensors to investigate the IoT opportuni-
ties in healthcare. This section briefly reviews the rele-
vant healthcare system studies that apply sensor
networks viable to IoT machine learning integration.

Dhar and others [21] suggested an interference-aware
sensor scheduler for a real-time smart health-monitoring
system to enable IoT healthcare monitoring. Using a
shared fixed-bandwidth channel with collision preven-
tion protocols, several sensors were linked to a nearby
data-processing unit to test bandwidth and communica-
tion latency for use by smart health-monitoring systems.
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Based on the need to provide prioritized discrete commu-
nications, the IoT-based scheduling strategy reduced data
loss and sensor interference. Zhang and others [22]
reviewed user-centric prehospitalization communication
technologies to provide a design strategy for resolving
data transmission problems while improving user-
friendliness in time-critical medical settings.

Vaishya and others [23] identified potential new
cutting-edge applications for disease prevention and
treatment, including IoT, big data consumption, and
machine learning opportunities. Utilizing outcome-
oriented technologies, current and potential patients
were accurately evaluated, analyzed, forecasted, and fol-
lowed. The utility of the described concepts in applying
machine learning to prevent and regulate COVID-19 was
discussed by Adly and others [24], and artificial intelli-
gence (AI) was found to contribute to new and depend-
able healthcare paradigms. Arora [25] examined recent
digital AI healthcare breakthroughs, highlighting both
the dangers and benefits. By changing clinical practices
and streamlining workflows, AI is expected to enhance
healthcare opportunities and provisions.

3 | PRELIMINARIES

3.1 | ANNs

An ANN leverages a set of connected artificial neurons
that mimic the biological processing methods of the
human brain, in which one neuron receives inputs and
provides outputs to other neurons. With the ANN, the
input may comprise external data (i.e., images or docu-
ments) or adjacent neuron output [22]. Tasks such as
identifying an object in an image are accomplished when
the final output neuron of the network provides its prod-
uct. An ANN consists of several stacked layers, and
Figure 1 shows the input layer, some of the hidden
layers, and the output layers.

3.2 | MPA

The MPA was inspired by observing the behaviors of
ocean predators as they identify and locate prey, particu-
larly in austere selection environments. Lévy strategies
are used, and when there is an abundance of prey, Brow-
nian techniques are applied [26]. Based on the prey
search space, the MPA initially allocates random values
to a set of solutions. The following expression calculates
these values:

I0 ¼Lmin þ r�ðLmax �Lmin Þ, ð1Þ

where Lmin denotes the minimum search space bound-
ary, Lmax denotes the maximum, and a random value
between 0 and 1 is represented as r.

Both the predator and prey are search agents, and the
predator searches for the prey’s food as the prey searches
for its meal. After each search process, the matrix of the
uppermost predator (i.e., the elite) is updated.

Elite¼

I111 I112 ::: I11d
I121 I122 ::: I12d

..

. ..
. ..

.

I1s1 I1s2 ::: I1sd

2
66664

3
77775, ð2Þ

Prey¼

I11 I12 ::: I1d
I21 I22 ::: I2d

..

. ..
. ..

.

Is1 Is2 ::: Isd

2
66664

3
77775: ð3Þ

The number of agents is represented by s, the number
of dimensions is d, and Ilm denotes the mth dimension of
the lth prey. The predicted location of prey is improved at
each cycle by simulating the entire predator–prey hunt-
ing process and altering the velocity ratios.

3.2.1 | High velocity ratio

When the velocity ratio is high, the predator may proceed
faster than the prey, implemented during the initial opti-
mization phase. The following equation changes the posi-
tion of the prey after each repetition:

Lp ¼RBM⨂ Elitek�RBM⨂Pkð Þ, k¼ 1,2,…,s, ð4Þ

F I GURE 1 Artificial neural network diagram.
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Pk ¼PkþC:R⨂Lp, ð5Þ

where Lp represents the location of the prey, the Brow-
nian motion of the random vector is denoted as RBM,R
represents a random number that varies from 0 to 1, p is
set to a constant (i.e., 0.5), and s denotes the number of
search agents.

3.2.2 | Unit velocity ratio

When searching for prey or food, both predator and prey
travel to the same location. The MPA then switches from
an exploration phase to one of exploitation. This affects
the unit velocity ratio so that the hunter travels using a
Brownian motion pattern, and the prey continues to
travel using a Lévy pattern. Exploitation phase patterns
are represented by the following equations:

Lp ¼RLévy⨂ Elitek�RLévy⨂Ik
� �

, k¼ 1,2,…,s, ð6Þ

Ik ¼ IkþC:R⨂Lp, ð7Þ

where the random Lévy distribution value is RLévy. The
equations applied during the exploration phase are com-
puted as follows:

Lp ¼RBM⨂ RBM⨂Elitek� ILévy
� �

, k¼ 1, 2, …, s, ð8Þ

Ik ¼ IkþP:SM⨂Lp, SM¼ 1� t
tgen

� �2 t
tgen

, ð9Þ

where SM regulates the step-size motion of the hunter
and the total number of generations is tgen

3.2.3 | Low velocity ratio

This is the final exploitation step, during which the
hunter moves faster than the prey. This scenario is repre-
sented by the following equation:

Lp ¼RLévy⨂ RLévy⨂Elitek� Ik
� �

, k¼ 1, 2, …, s, ð10Þ

Ik ¼ IkþP:SM⨂Lp, SM¼ 1� t
tgen

� �2 t
tgen

: ð11Þ

3.2.4 | Eddy formation and the fish-
aggregating device (FAD) effect

Eddy formulations and FADs can change the behaviors
of marine predators. Equation (12) depicts their
influence:

Ik ¼
IkþSM R⨂Bmax �Bmin½ �⨂BS r5 <FAD

Ikþ½FADð1� rÞþ r�ðIr1� Ir2Þ r5 >FAD:

�
ð12Þ

Here, BS denotes the binary solution, and the FAD is
assigned a value of 0.2. The prey indices are denoted by
r1 and r2.

3.3 | ASO approach

The ASO [27] method is a heuristic algorithm that
leverages the properties of molecular dynamics. It
depicts the relationships between atomic restriction
and interaction forces in various positions using atomic
weights to calculate movements in the search space.
The mutual action of the interaction and restriction
forces denotes the acceleration of the lth atom at the rth
iteration as follows:

atdl ðrÞ¼
Td
l ðrÞ

Md
l ðrÞ

þ Cd
l ðrÞ

Md
l ðrÞ

, ð13Þ

where Td
l ðrÞ denotes the total force, Cd

l ðrÞ is the con-
straint force, and Md

l ðrÞ is the mass of the lth atom at the
rth iteration.

Thus, the velocity and search position of the atom at
the ðlþ1Þth iteration are calculated as follows:

srl ðrþ1Þ¼ randdl s
r
l ðrÞþatdl ðrÞ, ð14Þ

pdl ðrþ1Þ¼ prl ðrÞþ srl ðrþ1Þ, ð15Þ

where srl ðrÞ represents the velocity of the lth atom at the
rth iteration and pdl denotes its search position.

4 | PROPOSED SLE PREDICTION
MODEL

4.1 | Proposed architecture

The IoT-based SLE prediction model is illustrated in
Figure 2. The objective of this study is to evaluate the
influence of several patient-related characteristics on
SLE symptom prediction. For the experiments, data
were acquired from the GEO dataset, which was
supplemented with additional artificially created data
to avoid local minima traps. Data security was
ensured during the subsequent transfer of the obtained
data via the IoT. Relevant data were downloaded from
the internet for hybrid MPA–ASO ANN model
training.
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4.2 | IoT integration

With the IoT, patient information is saved on a remote
hidden server that can be accessed as needed to carry out
the appropriate prediction actions. Different ANNs were
tested in this case, trained using the GEO dataset. Results
were sent to the remote server via the IoT, where it was
securely processed. Two types of security risks are
involved in the data exchange. The first type concerns
application security, meaning that the data must be
secured while being processed. The second type is user
security [8], which implies authentication and session
cryptography. Hence, the three most important charac-
teristics of secure IoT services are as follows:

• The data exchange must be protected from unauthor-
ized access.

• Services must be accessible only by authorized users,
regardless of context or location.

• Data privacy preservation should be properly guaran-
teed, and it should never be removed.

Assuring that the user data and private information
remain shielded from malevolent entities is the most
important security aspect of this case [4]. Figure 3 pre-
sents a flow diagram of these IoT security needs.

4.3 | Novel MPA–ASO ANN

ANNs utilize weight and bias variables to optimize fea-
tures during training, and it is necessary to obtain these
values for each node. The weights and biases are treated
as part of each predator’s structure, and real values are
determined randomly to generate their vectors. A flow-
chart of this process is presented in Figure 4.

MPA is a universal algorithm used for optimization,
and the iterations are divided to accomplish various func-
tions. Global exploration is completed in the first third of

each iteration, half of the particle exploration and exploi-
tation is completed in the middle third, and partial pro-
duction is completed in the final third. The global
searching ability effect at the beginning should provide

F I GURE 2 Block diagram of the proposed IoT-

integrated SLE prediction model.

F I GURE 3 Requirement of security in the IoT environment.

F I GURE 4 Flowchart for Proposed MPA-ASO based on ANN.
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an ideal path for the next stage of local growth, leading to
the best solution. To overcome constraints, the MPA is
integrated with ASO to improve its efficacy by replacing
the ASO algorithm’s location update strategy with MPA’s
initial stage strategy.

5 | EXPERIMENTAL RESULTS

The proposed model was implemented in the COLAB
framework on an Intel Core i3 2.3-GHz processor with
8-GB RAM. The GEO database provided gene screening
data (http://www.ncbi.nlm.nih.gov/geo) [29] for
GSE144390, GSE4588, GSE50772, and GSE81622
sequences, which are associated with SLE. The original
data were classified using a variety of performance mea-
sures, including kappa, Matthews correlation coefficient
(MCC), MSE, recall, specificity, F1 score, precision, accu-
racy, and recall. The proposed technique was contrasted
with different approaches to assess MPA [28], ASO [29],
chaotic ASO (CASO) [27], and opposition-based learning
(OBL) performance [28].

The parameters used to evaluate the functionality of
the proposed framework are as follows:

Accuracy¼ ðtpvþ tnvÞ
ðtpvþ tnvþ f pvþ f nvÞ , ð16Þ

Precision¼ tpv
tpvþ f pv

, ð17Þ

F1 score¼ 2�precision�
tpv

ðtpvþf nvÞ
� �

precisionþ tpv
ðtpvþf nvÞ

� � : ð18Þ

Kappa¼Accuracy�Expectedaccuracy
1�Expectedaccuracy

, ð19Þ

Expectedaccuracy¼
ððtpvþ f nvÞ�ðtpvþ f pvÞÞþ
ððf pvþ tnvÞ�ðf nvþ tnvÞÞ
ðtpvþ tnvþ f pvþ f nvÞ2 , ð20Þ

Sensitivity¼ tpv
tpvþ f nv

, ð21Þ

Specificity¼ tpv
f pvþ tnv

, ð22Þ

where tpv indicates true positives, f pv indicates false posi-
tives, indicates true negatives, and f nv indicates false
negatives.

Table 1 compares the performance of the proposed
strategy in terms of recall, specificity, precision, accuracy,
F1 score, MCC, kappa, and MSE. As can be seen, the pro-
posed technique outperforms existing approaches in all
measures. Compared with existing techniques, the pro-
posed methodology has an extremely low error rate.

TAB L E 1 Performance comparison of proposed approach with other approaches.

Method Accuracy Sensitivity Specificity Precision
F1

score

Matthews
correlation
coefficient Kappa

Mean
square
error

Proposed 0.9970 0.9970 0.9992 0.9970 0.9970 0.9963 0.9906 0.0030

Chaotic atom search
optimization (ASO)

0.9840 0.9843 0.9960 0.9850 0.9840 0.9805 0.9500 0.0160

Opposition-based learning
marine predator algorithm
(MPA)

0.9401 0.9391 0.9850 0.9511 0.9374 0.9284 0.8127 0.0599

ASO 0.9295 0.9292 0.9824 0.9281 0.9286 0.9111 0.7797 0.0705

MPA 0.9251 0.9258 0.9813 0.9294 0.9248 0.9083 0.7659 0.0749

F I GURE 5 Comparing the accuracy of the proposed approach

with other models.
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Figure 5 displays the recall, precision, F1-score, and
accuracy of the recommended strategy compared with
MPA, ASO, CASO, and OBL-MPA models. Overall, the
proposed model produced better prediction accuracies for
patients with SLE symptoms.

Figure 6 illustrates the confusion matrix of the pro-
posed technique versus the alternative models. These
parameters reflect the number of times the planned
model becomes too confused to provide useful output.
The matrix comprises rows and columns, where the rows
represent the actual number of patients with SLE symp-
toms and the columns represent the predicted number.

The classifier predicts the projected count, and if it has
only true positives and true negatives, it is considered to
be effective and accurate. The diagonal values should all
be nonzero, indicating that the model is effective. The
proposed MPA–ASO ANN performs well in recognizing
different SLE symptoms with an accuracy greater than
99.70%. Hence, the proposed model is the best thus far.

By analyzing Figure 7, the proposed MPA–ASO ANN
has the best searching capability because it can increase
its search area dynamically, unlike the others. This shows
that the new ANN model has a better solution preserva-
tion capability.

F I GURE 6 Confusion matrix for the proposed approach and other models: (A) proposed algorithm, (B) chaotic atom search algorithm,

(C) opposition-based learning marine predator algorithm, (D) atomic search algorithm, (E) marine predator algorithm.
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6 | CONCLUSION

In this study, a new machine learning model that inte-
grates IoT was developed to detect SLE symptoms and
triggers. The IoT used with this model provides effective,
timely, and secure communication among cloud-based
servers and user devices. The proposed MPA–ASO ANN
method reduces biases, tunes the number of neurons,
and appropriately weighs each neuron’s hyperparameters
to obtain the lowest MSE values. Compared with MPA
and ASO alone, the proposed technique is more effective,
with an average prediction accuracy of 99.70%. Compared
with the outcomes of baseline MPA+ASO and ASO
+OBL-MPA, it is evident that the recommended MPA–
ASO ANN produces the best results. Therefore, we can
conclude that the model’s architecture is reliable and use-
ful for prediction, particularly for diagnosing SLE symp-
toms and triggers. In the future, this approach can be
expanded by manually collecting more data and testing
for generalizability for other disease types.
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