DOI QR코드

DOI QR Code

Long range-based low-power wireless sensor node

  • Komal Devi (Electronics and Communication Engineering, Punjab Engineering College (Deemed to be University)) ;
  • Rita Mahajan (Electronics and Communication Engineering, Punjab Engineering College (Deemed to be University)) ;
  • Deepak Bagai (Electronics and Communication Engineering, Punjab Engineering College (Deemed to be University))
  • Received : 2022.04.03
  • Accepted : 2022.10.11
  • Published : 2023.08.10

Abstract

Sensor nodes are the most significant part of a wireless sensor network that offers a powerful combination of sensing, processing, and communication. One major challenge while designing a sensor node is power consumption, as sensor nodes are generally battery-operated. In this study, we proposed the design of a low-power, long range-based wireless sensor node with flexibility, a compact size, and energy efficiency. Furthermore, we improved power performance by adopting an efficient hardware design and proper component selection. The Nano Power Timer Integrated Circuit is used for power management, as it consumes nanoamps of current, resulting in improved battery life. The proposed design achieves an off-time current of 38.17309 nA, which is tiny compared with the design discussed in the existing literature. Battery life is estimated for spreading factors (SFs), ranging from SF7 to SF12. The achieved battery life is 2.54 years for SF12 and 3.94 years for SF7. We present the analysis of current consumption and battery life. Sensor data, received signal strength indicator, and signal-to-noise ratio are visualized using the ThingSpeak network.

Keywords

References

  1. J. Santos, J. J. P. C. Rodrigues, J. Casal, K. Saleem, and V. Denisov, Intelligent personal assistants based on internet of things approaches, IEEE Syst. J. 12 (2018), no. 2, 1793-1802. https://doi.org/10.1109/JSYST.2016.2555292
  2. S. P. Singh and S. C. Sharma, A survey on research issues in wireless sensor networks, Open Trans. Wirel. Sensor Netw. 2 (2015), no. 1, 1-18.
  3. F. K. Shaikh, S. Zeadally, and E. Exposito, Enabling technologies for green Internet of Things, IEEE Syst. J. 11 (2017), no. 2, 983-994. https://doi.org/10.1109/JSYST.2015.2415194
  4. M. T. Lazarescu, Design of a WSN platform for long-term environmental monitoring for Iot applications, IEEE J. Emerg. Sel. Top. Circ. Syst. 3 (2013), no. 1, 45-54. https://doi.org/10.1109/JETCAS.2013.2243032
  5. L. Cui, F. Wang, H. Luo, H. Ju, et al., A pervasive sensor node architecture, (IFIP International Conference on Network and Parallel Computing, Whnam, China), 2004, pp. 565-567.
  6. O. B. Akan, O. Cetinkaya, C. Koca, and M. Ozger, Internet of hybrid energy harvesting things, IEEE Internet Things J. 5 (2018), no. 2, 736-746. https://doi.org/10.1109/JIOT.2017.2742663
  7. S. Sudevalayam and P. Kulkarni, Energy harvesting sensor nodes: Survey and implications, IEEE Commun. Surv. Tutor. 13 (2011), no. 3, 443-461. https://doi.org/10.1109/SURV.2011.060710.00094
  8. S. Siddheswar, S. Biplab, and D. Uma, Design of wireless sensor node to measure vibration and environment parameter for structural health monitoring application, Intelligent computing and applications, Springer, 2015, pp. 59-65.
  9. A. Somov, A. Baranov, D. Spirjakin, and R. Passerone, Circuit design and power consumption analysis of wireless gas sensor nodes: One-sensor versus two-sensor approach, IEEE Sensors J. 14 (2014), no. 6, 2056-2063. https://doi.org/10.1109/JSEN.2014.2309001
  10. A. Alhalafi, L. Sboui, R. Naous, and B. Shihada, gTBS: A green task-based sensing for energy efficient wireless sensor networks, (IEEE Conference on Computer Communications Workshops, San Francisco, CA, USA), 2016, pp. 136-143.
  11. R. Yan, H. Sun, and Y. Qian, Energy-aware sensor node design with its application in wireless sensor networks, IEEE Trans. Instr. Meas. 62 (2013), no. 5, 1183-1191. https://doi.org/10.1109/TIM.2013.2245181
  12. A. Kumar and G. P. Hancke, An energy-efficient smart comfort sensing system based on the IEEE 1451 standard for green buildings, IEEE Sensors J. 14 (2014), no. 12, 4245-4252. https://doi.org/10.1109/JSEN.2014.2356651
  13. L. Catarinucci, S. Guglielmi, R. Colella, and L. Tarricone, Pattern-reconfigurable antennas and smart wake-up circuits to decrease power consumption in WSN nodes, IEEE Sensors J. 14 (2014), no. 12, 4323-4324. https://doi.org/10.1109/JSEN.2014.2360939
  14. M. Magno, F. Vultier, B. Szebedy, H. Yamahachi, R. H. R. Hahnloser, and L. Benini, A Bluetooth-low-energy sensor node for acoustic monitoring of small birds, IEEE Sensors J. 20 (2020), no. 1, 425-433.
  15. S. M. Asenov and D. M. Tokmakov, Development of Ultra-Low Power Sensor Node Using FRAM and Nano Timer, 2020. https://doi.org/10.1109/electronica50406.2020.9305121
  16. K. Ali and D. J. Rogers, An orientation-independent multi-input energy harvesting wireless sensor node, IEEE Trans. Ind. Electr. 68 (2021), no. 2, 1665-1674. https://doi.org/10.1109/TIE.2020.2967719
  17. M. Sunitha and R. K. Karunavathi, Localization of nodes in underwater wireless sensor networks, (4th International Conference on Recent Trends on Electronics, Information, Communication & Technology, Bangalore, India) 2019, pp. 820-823.
  18. T. P. D. Pieris, K. V. D. S. Chathuranga, A. L. Kulasekera, P. Guha, and P. Mukhija, Energy and power consumption analysis of a wireless sensor node without a voltage regulator, (5th International Conference on Information Technology Research, (Moratuwa, Sri Lanka), 2020, pp. 1-6.
  19. N. Dinh, Tveito, and Haugen, Performance evaluation for energy harvesting (EH)-based sensor nodes under Lorawan connectivity, (IEEE Eighth International Conference on Communications and Electronics, Phu Quoc Island, Vietnam), 2021, pp. 64-69.
  20. O. H. Kombo, S. Kumaran, and A. Bovim, Design and application of a low-cost, low-power, LoRa-GSM, IoT enabled system for monitoring of groundwater resources with energy harvesting integration, IEEE Access 9 (2021), 128417-128433. https://doi.org/10.1109/ACCESS.2021.3112519
  21. S. Misra, S. K. Roy, A. Roy, M. S. Obaidat, and A. Jha, MEGAN: multipurpose energy-efficient, adaptable, and low-cost wireless sensor node for the Internet of Things, IEEE Syst. J. 14 (2020), no. 1, 144-151. https://doi.org/10.1109/JSYST.2019.2920099
  22. A. I. Petrariu, A. Lavric, E. Coca, and V. Popa, Hybrid power management system for LoRa communication using renewable energy, IEEE Internet Things J. 8 (2021), no. 10, 8423-8436.  https://doi.org/10.1109/JIOT.2020.3046324
  23. PIC18(L)F2X/4XK22. Low-Power, High-Performance Microcontrollers with nanoWatt XLP Technology Datasheet. https://pdf1.alldatasheet.com/datasheet-pdf/view/348768/MICROCHIP/PIC18LF46K22.html, [Online; accessed on: Oct. 25, 2021]. 
  24. DHT11, Humidity and Temperature Sensor Datasheet. https://www.mouser.com/datasheet/2/758/DHT11-Technical-DataSheet-Translated-Version-1143054.pdf, [Online; accessed on: Nov. 17, 2021]. 
  25. TPL5111, Nano-Power System Timer for Power Gating Datasheet. https://datasheetspdf.com/pdf-file/1411520/etcTI/TPL5111/1, [Online; accessed on: Dec. 14, 2021]. 
  26. Timer module reference for done pin. https://learn.sparkfun.com/tutorials/tpl5110-nano-power-timer-hookup-guide/all#resourcesand-going-further, [Online; accessed on: Dec. 12, 2021]. 
  27. RN2483, Transceiver Module Datasheet. http://ww1.microchip. com/downloads/en/devicedoc/50002346c.pdf, [Online; accessed on: Sep. 9, 2021]. 
  28. RT9080, Low-Dropout Linear Regulator Datasheet. https://www.richtek.com/assets/product_file/RT9080/DS9080-00.pdf, [Online; accessed on: Jun. 14, 2021]. 
  29. RN283 library. https://github.com/kamval/RN2483, [Online; accessed on: Dec. 10, 2021]. 
  30. MQTT, Steps for MQTT integration. https://www. thethingsindustries.com/docs/integrations/mqtt/, [Online; accessed on: Oct. 22, 2021]. 
  31. ThingSpeak, Public view of channel. https://thingspeak.com/channels/1548502, [Online; accessed on: Nov. 14, 2021].