DOI QR코드

DOI QR Code

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang (National Laboratory of Radar Signal Processing, Xidian University) ;
  • Haihong Tao (National Laboratory of Radar Signal Processing, Xidian University) ;
  • Ziye, Fang (School of Computer Science and Technology, Xidian University) ;
  • Jian Xie (School of Electronics and Information, Northwestern Polytechnical University)
  • Received : 2022.01.10
  • Accepted : 2022.06.07
  • Published : 2023.06.20

Abstract

Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

Keywords

Acknowledgement

This research was funded in part by the Innovation Project of Science and Technology Commission of the Central Military Commission under Grant 19-HXXX-01-ZD-006-XXX-XX, in part by the National Key Laboratory Foundation under Grant 61424110302 and in part by the National Natural Science Foundation of China under Grant 61771015.

References

  1. P. Gounon, C. Adnet, and J. Galy, Localization angulaire de signaux non circulaires, Traitement du Signal. 15 (1998), no. 1, 17-23.
  2. P. Charge, Y. Wang, and J. Saillard, A noncircular sources direction finding method using polynomial rooting, Signal Process. 81 (2001), 1765-1770. https://doi.org/10.1016/S0165-1684(01)00071-8
  3. H. Abeida and J. P. Delmas, MUSIC-like estimation of direction of arrival for noncircular sources, IEEE Trans. Signal Process. 54 (2006), no. 7, 2678-2690. https://doi.org/10.1109/TSP.2006.873505
  4. F. Gao, A. Nallanathan, and Y. Wang, Improved MUSIC under the coexistence of both circular and noncircular sources, IEEE Trans. Signal Process. 56 (2008), no. 7, 3033-3038. https://doi.org/10.1109/TSP.2007.916123
  5. J. Liu, Z. Huang, and Y. Zhou, Extended 2q-MUSIC algorithm for noncircular signals, Signal Process. 88 (2008), no. 6, 1327-1339. https://doi.org/10.1016/j.sigpro.2007.11.012
  6. X. Gou, Z. Liu, and Y. Xu, Biquaternion cumulant-MUSIC for DOA estimation of noncircular signals, Signal Process 93 (2013), no. 4, 874-881. https://doi.org/10.1016/j.sigpro.2012.10.010
  7. Z. Liu, Z. Huang, Y. Zhou, and J. Liu, Direction-of-arrival estimation of noncircular signals via sparse representation, IEEE Trans. Aerosp. Electron. Syst. 48 (2012), no. 3, 2690-2698. https://doi.org/10.1109/TAES.2012.6237619
  8. X. Yang, G. Li, and Z. Zheng, DOA estimation of noncircular signal based on sparse representation, Wirel. Pers. Commun. 82 (2015), no. 4, 2363-2375. https://doi.org/10.1007/s11277-015-2352-z
  9. J. Cai, W. Liu, R. Zong, and B. Wu, Sparse array extension for non-circular signals with subspace and compressive sensing based DOA estimation methods, Signal Process. 145 (2018), 59-67. https://doi.org/10.1016/j.sigpro.2017.11.012
  10. R. Zheng, X. Xu, Z. Ye, T. Mahmud, J. Dai, and K. Shabir, Sparse Bayesian learning for off-grid DOA estimation with Gaussian mixture priors when both circular and non-circular sources coexist, Signal Process. 161 (2019), 124-135. https://doi.org/10.1016/j.sigpro.2019.03.021
  11. M. Doron, A. Weiss, and H. Messer, Maximum-likelihood direction finding of wide-band sources, IEEE Trans. Signal Process. 41 (1993), no. 1, 411-414. https://doi.org/10.1109/TSP.1993.193166
  12. P. Schultheiss and H. Messer, Optimal and suboptimal broad-band source location estimation, IEEE Trans. Signal Process. 41 (1993), no. 9, 2752-2763. https://doi.org/10.1109/78.236500
  13. M. Agrawal and S. Prasad, DOA estimation of wideband sources using a harmonic source model and uniform linear array, IEEE Trans. Signal Process. 47 (1999), no. 3, 619-629. https://doi.org/10.1109/78.747770
  14. K. Buckley and L. Griffiths, Broad-band signal-subspace spatial-spectrum (BASS-ALE) estimation, IEEE Trans. Acoust., Speech, Signal Process. 36 (1988), no. 7, 953-964. https://doi.org/10.1109/29.1617
  15. B. Yin, Y. Xu, Y. Huang, Y. Lu, and Z. Liu, Direction finding for wideband source signals via steered effective projection, IEEE Sens. J. 18 (2018), no. 2, 741-751.
  16. S. Amirsoleimani and A. Olfat, Wideband modal orthogonality: A new approach for broadband DOA estimation, Signal Process. 176 (2020), 107696.
  17. M. Wax, T. J. Shan, and T. Kailath, Spatio-temporal spectral analysis by eigenstructure methods, IEEE Trans. Acoust., Speech, Signal Process. 32 (1984), no. 4, 817-827. https://doi.org/10.1109/TASSP.1984.1164400
  18. H. Wang and M. Kaveh, Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources, IEEE Trans. Acoust., Speech, Signal Process. 33 (1985), no. 4, 823-831. https://doi.org/10.1109/TASSP.1985.1164667
  19. Y. Yoon, L. Kaplan, and J. McClellan, TOPS: New DOA estimator for wideband signals, IEEE Trans. Signal Process. 54 (2006), no. 6, 1977-1989. https://doi.org/10.1109/TSP.2006.872581
  20. Y. Bai, J. Li, Y. Wu, Q. Wang, and X. Zhang, Weighted incoherent signal subspace method for DOA estimation on wideband colored signals, IEEE Access. 7 (2019), 1224-1233. https://doi.org/10.1109/ACCESS.2018.2886250
  21. H. Hung and M. Kaveh, Focussing matrices for coherent signal-subspace processing, IEEE Trans. Acoust., Speech, Signal Process. 36 (1988), no. 8, 1272-1281. https://doi.org/10.1109/29.1655
  22. S. Valaee and P. Kabal, Wideband array processing using a twosided correlation transformation, IEEE Trans. Signal Process. 43 (1995), no. 1, 160-172. https://doi.org/10.1109/78.365295
  23. D. Feng, M. Bao, Z. Ye, L. Guan, and X. Li, A novel wideband DOA estimator based on Khatri-Rao subspace approach, Signal Process. 91 (2011), 2415-2419.
  24. Z. Liu, Z. Huang, and Y. Zhou, Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation, IEEE Trans. Signal Process. 59 (2011), no. 9, 4256-4270. https://doi.org/10.1109/TSP.2011.2159214
  25. Q. Shen, W. Cui, W. Liu, S. Wu, Y. Zhang, and M. Amin, Underdetermined wideband DOA estimation of off-grid sources employing the difference co-array concept, Signal Process. 130 (2017), 299-304. https://doi.org/10.1016/j.sigpro.2016.07.022
  26. N. Hu, B. Sun, Y. Zhang, J. Dai, J. Wang, and C. Chang, Underdetermined DOA estimation method for wideband signals using joint nonnegative sparse Bayesian learning, IEEE Signal Process. Lett 24 (2017), no. 5, 535-539.
  27. Y. Shi, X. Mao, C. Zhao, and Y. Liu, Underdetermined DOA estimation for wideband signals via joint sparse signal reconstruction, IEEE Signal Process. Lett. 26 (2019), no. 10, 1541-1545. https://doi.org/10.1109/LSP.2019.2937381
  28. W. Cui, Q. Shen, W. Liu, and S. Wu, Low complexity DOA estimation for wideband off-grid sources based on re-focused compressive sensing with dynamic dictionary, IEEE J. Sel. Top. Signal Process. 13 (2019), no. 5, 918-930. https://doi.org/10.1109/JSTSP.2019.2932973
  29. Q. Shen, W. Liu, W. Cui, S. Wu, Y. D. Zhang, and M. G. Amin, Focused compressive sensing for underdetermined wideband DOA estimation exploiting high-order difference coarrays, IEEE Signal Process. Lett. 24 (2017), no. 1, 86-90. https://doi.org/10.1109/LSP.2016.2638880
  30. X. Zhang, H. Tao, J. Xie, and X. Jiang, A novel wideband DOA estimation method based on a fast sparse frame, IET Commun. 15 (2021), no. 7, 935-945. https://doi.org/10.1049/cmu2.12132
  31. J. Krolik and D. Swingler, Multiple broad-band source location using steered covariance matrices, IEEE Trans. Acoust., Speech, Signal Process. 37 (1989), no. 10, 1481-1494. https://doi.org/10.1109/29.35386
  32. Y. Huang, Y. Xu, Y. Lu, and Z. Liu, Envelope aligned inverse power scanning for direction of arrival estimation of circular and noncircular wideband source signals, IET Microw. Antennas Propag. 12 (2018), no. 9, 1494-1503. https://doi.org/10.1049/iet-map.2017.1005
  33. Y. Huang, Y. Lu, Y. Xu, and Z. Liu, Direction-of-arrival estimation of circular and noncircular wideband source signals via augmented envelope alignment, IEEE Sens. J. 13 (2019), no. 2, 1219-1230.
  34. Y. Huang, Y. Xu, Y. Lu, and Z. Liu, Aligned propagator scanning approach to DOA estimation of circular and noncircular wideband source signals, IEEE Trans. Veh. Technol. 68 (2019), no. 2, 1702-1717. https://doi.org/10.1109/TVT.2018.2890042
  35. Y. Yang, Z. Liu, Y. Xu, and J. Zhuang, Cumulant-based biquaternion approach to direction finding of wideband signals, IEEE Signal Commun. Lett. 24 (2020), no. 3, 630-634. https://doi.org/10.1109/LCOMM.2019.2957228
  36. Z. Yang, L. Xie, and C. Zhang, Off-grid direction of arrival estimation using sparse Bayesian inference, IEEE Trans. Signal Process. 61 (2013), no. 1, 38-43. https://doi.org/10.1109/TSP.2012.2222378
  37. A. Moffet, Minimum-redundancy linear arrays, IEEE Trans. Antennas Propag. 16 (1968), no. 2, 172-175. https://doi.org/10.1109/TAP.1968.1139138
  38. M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, 2008, Available from: http://cvxr.com/cvx
  39. J. Delmas and H. Abeida, Stochastic Cramer-Rao bound for noncircular signals with application to DOA estimation, IEEE Trans. Signal Process. 52 (2004), no. 11, 3192-3199.  https://doi.org/10.1109/TSP.2004.836462