DOI QR코드

DOI QR Code

Design and experimentation of remote driving system for robotic speed sprayer operating in orchard environment

  • Wonpil, Yu (Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Soohwan Song (Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute)
  • 투고 : 2022.02.25
  • 심사 : 2022.10.11
  • 발행 : 2023.06.20

초록

The automation of agricultural machines is an irreversible trend considering the demand for improved productivity and lack of labor in handling agricultural tasks. Unstructured working environments and weather often inhibit a seemingly simple task from being fully autonomously performed. In this context, we propose a remote driving system (RDS) to aid agricultural machines designed to operate autonomously. Particularly, we modify a commercial speed sprayer for orchard environments into a robotic speed sprayer to evaluate the proposed RDS's usability and test three sensor configurations in terms of human performance. Furthermore, we propose a confidence error ellipsebased task performance measure to evaluate human performance. In addition, we present field experimental results describing how the sensor configurations affect human performance. We find that a combination of a semiautonomous line tracking device and a wide-angle camera is the most effective for spraying. Finally, we discuss how to improve the proposed RDS in terms of usability and obtain a more accurate measure of human performance.

키워드

과제정보

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (2018-0-00205, "Development of Core Technology of Robot Task-Intelligence for Improvement of Labor Condition").

참고문헌

  1. H. Nehme, C. Aubry, T. Solatges, X. Savatier, R. Boutteau, and R. Rossi, Lidar-based structure tracking for agricultural robots: application to autonomous navigation in vineyards, J. Intell. Robot. Syst. 103 (2021), no. 4, 1-16. https://doi.org/10.1007/s10846-021-01445-8
  2. J. Zhang, A. Chambers, S. Maeta, M. Bergerman, and S. Singh, 3D perception for accurate row following: methodology and results, (IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan), 2013, pp. 5306-5313.
  3. A. Ahmadi, L. Nardi, N. Chebrolu, and C. Stachniss, Visual servoing-based navigation for monitoring row-crop fields, (IEEE Int. Conf. Robotics and Automation, Paris, France), 2020, pp. 4920-4926.
  4. M. Bakken, R. J. D. Moore, and P. From, End-to-end learning for autonomous crop row-following, (IFAC Conf. Sensing, Control and Automation Technologies for Agriculture, Sydney, Australia), 2019, pp. 102-107.
  5. M. F. Land and D Lee, Where we look when we steer, Nature 369 (1994), 742-744. https://doi.org/10.1038/369742a0
  6. J. B. F. Erp and Padmos P., Image parameters for driving with indirect viewing systems, Ergonomics 46 (2003), no. 15, 1471-1499. https://doi.org/10.1080/0014013032000121624
  7. G. Adamides, C. Katsanos, I. Constantinou, M. Xenos, T. Hadzilacos, and Y. Edan, Design and development of a semiautonomous agricultural vineyard sprayer: human-robot interaction aspects, J. Field Robot. 34 (2017), no. 8, 1407-1426. https://doi.org/10.1002/rob.21721
  8. N. Murakami, A. Ito, J. D. Will, M. Steffen, K. Inoue, K. Kita, and S. Miyaura, Development of a teleoperation system for agricultural vehicles, Comput. Electron. Agricult. 63 (2008), 81-88. https://doi.org/10.1016/j.compag.2008.01.015
  9. J. Y. C. Chen, E. C. Haas, and M. J. Barnes, Human performance issues and user interface design for teleoperated robots, IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. 37 (2007), 1231-1245. https://doi.org/10.1109/TSMCC.2007.905819
  10. M. F. Land, Does steering a car involve perception of the velocity flow field? Motion vision: computational, neural, and ecological constraints, J. M. Zanker and J Zeil, (eds.), Springer-Verlag, Berlin, 2001, pp. 227-235.
  11. R. N. Jazar, Vehicle dynamics: theory and application, Springer, New York 2008.
  12. D. Wang and F. Qi, Trajectory planning for a four-wheel-steering vehicle, (IEEE Int. Conf. Robotics and Automation, Seoul, Republic of Korea), 2001, pp. 3320-3325.
  13. G. N. DeSouza and A. C. Kak, Vision for mobile robot navigation: A survey, IEEE Trans. Pattern Anal. Machine Intell. 24 (2002), no. 2, 237-267. https://doi.org/10.1109/34.982903
  14. W. Yu, S. Li, D. Kang, W. Chun, Y. Choi, and K. Kim, Performance evaluation of riding-type rice transplanter using 3 dof motion simulator, ETRI J. (2022). Under review.
  15. O. C. Barawid Jr., K. A. I. Mizushima, and N. Noguchi, Development of an autonomous navigation system using a twodimensional laser scanner in an orchard application, Biosyst. Eng. 96 (2007), no. 2, 139-149. https://doi.org/10.1016/j.biosystemseng.2006.10.012
  16. J. H. Han, J. H. Park, Y. Y. Jang, J. D. Gu, and C. Y. Kim, Performance evaluation of an autonomously driven agricultural vehicle in an orchard environment, Sensors 22 (2022), no. 1, 114.
  17. J. Brooke, SUS: a quick and dirty usability scale, Usability evaluation in industry, P. W. Jordan, J. B. Thomas, I. L. McClelland, and B. Weerdmeester, (eds.), CRC Press, London, UK, 1996, pp. 189-194.
  18. M. Yu and G. Ma, 360 surround view system with parking guidance, SAE Int. J. Commercial Vehicles. 7 (2014), no. 1, 19-12.
  19. GOtrack, Line assist, 2022. https://gotrack.pl/en/gotrack-lineassist/