DOI QR코드

DOI QR Code

A multilayered Pauli tracking architecture for lattice surgery-based logical qubits

  • Jin-Ho, On (Future Computing Research Division, Electronics and Telecommunications Research Institute) ;
  • Chei-Yol Kim (Future Computing Research Division, Electronics and Telecommunications Research Institute) ;
  • Soo-Cheol Oh (Future Computing Research Division, Electronics and Telecommunications Research Institute) ;
  • Sang-Min Lee (Future Computing Research Division, Electronics and Telecommunications Research Institute) ;
  • Gyu-Il Cha (Future Computing Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2022.02.04
  • Accepted : 2022.06.23
  • Published : 2023.06.20

Abstract

In quantum computing, the use of Pauli frames through software traces of classical computers improves computation efficiency. In previous studies, error correction and Pauli operation tracking have been performed simultaneously using integrated Pauli frames in the physical layer. In such a complex processing structure, the number of simultaneous operations processed in the physical layer exponentially increases as the distance of the surface code encoding logical qubit increases. This study proposes a Pauli frame management architecture partitioned into two layers for a lattice surgery-based surface code and describes its structure and operation rules. To evaluate the effectiveness of our method, we generated a random circuit according to the gate ratios constituting the commonly known quantum circuits and compared the generated circuit with the existing Pauli frame and our method. Simulations show a decrease of about 5% over traditional methods. In the case of experiments that only increase the code distance of the logical qubit, it can be seen that the effect of reducing the physical operation through the logical Pauli frame becomes more important.

Keywords

Acknowledgement

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00014, A Technology Development of Quantum OS for Fault-tolerant Logical Qubit Computing Environment).

References

  1. J. Preskill, Quantum computing in the Nisq era and beyond, Quantum. 2 (2018), 79.
  2. I. Kang, J. Y. Choung, D.i. Kang, and I. Park, Divergence of knowledge production strategies for emerging technologies between late industrialized countries: focusing on quantum technology, ETRI Journal. 43 (2021), no. 2, 246-259. https://doi.org/10.4218/etrij.2019-0501
  3. J. Preskill, Reliable quantum computers, Proc. Royal Soc. London. Ser. A: Math. Phys. Eng. Sci. 454 (1998), no. 1969, 385-410. https://doi.org/10.1098/rspa.1998.0167
  4. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nat. Phys. 14 (2018), no. 6, 595-600. https://doi.org/10.1038/s41567-018-0124-x
  5. B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87 (2015), no. 2, 307-346. https://doi.org/10.1103/RevModPhys.87.307
  6. E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549 (2017), no. 7671, 172-179. https://doi.org/10.1038/nature23460
  7. F. Gaitan, Quantum error correction and fault tolerant quantum computing, CRC Press Boca Raton, FL, 2008.
  8. D. A. Lidar and T. A. Brun, Quantum error correction, Cambridge university press, 2013.
  9. D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, in quantum information science and its contributions to mathematics, (Proc. Symp. Appl. Math.), 2010, pp. 13-58.
  10. A. Y. Kitaev, Fault-tolerant quantum computation by Anyons, Ann. Phys. Rehabil. Med. 303 (2003), no. 1, 2-30.
  11. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A 86 (2012), no. 3, 032324.
  12. H. Bombin, Topological order with a twist: Ising Anyons from an abelian model, Phys. Rev. Lett. 105 (2010), no. 3, 030403.
  13. J. Roffe, Quantum error correction: an introductory guide, Contemporary Physics. 60 (2019), no. 3, 226-245. https://doi.org/10.1080/00107514.2019.1667078
  14. D. Litinski, A game of surface codes: Large-scale quantum computing with lattice surgery, Quantum. 3 (2019), 128.
  15. E. Knill, Quantum computing with realistically noisy devices, Nature 434 (2005), no. 7029, 39-44. https://doi.org/10.1038/nature03350
  16. P. Aliferis and J. Preskill, Fault-tolerant quantum computation against biased noise, Phys. Rev. A 78 (2008), no. 5, 052331.
  17. D. P. DiVincenzo and P. Aliferis, Effective fault-tolerant quantum computation with slow measurements, Phys. Rev. Lett. 98 (2007), no. 2, 020501.
  18. N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and Y. Yamamoto, Layered architecture for quantum computing, Physical Review X. 2 (2012), no. 3, 031007.
  19. C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Surface code quantum computing by lattice surgery, New J. Phys. 14 (2012), no. 12, 123011.
  20. H. Bombin and M. A. Martin-Delgado, Optimal resources for topological two-dimensional stabilizer codes: comparative study, Phys. Rev. a 76 (2007), no. 1, 012305.
  21. D.S. Wang, A.G. Fowler, A.M. Stephens, and L.C.L. Hollenberg, Threshold error rates for the toric and surface codes, arXiv preprint arXiv:0905.0531, 2009.
  22. H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber, and M. A. Martin-Delgado, Strong resilience of topological codes to depolarization, Phys. Rev. X. 2 (2012), no. 2, 021004.
  23. A. M. Stephens, Fault-tolerant thresholds for quantum error correction with the surface code, Phys. Rev. a 89 (2014), no. 2, 022321.
  24. K. Fujii, Quantum computation with topological codes: from qubit to topological fault-tolerance, Springer, 2015.
  25. (L. Riesebos, X. Fu, S. Varsamopoulos, C.G. Almudever, and K. Bertels, Pauli frames for quantum computer architectures, (Proceedings of the 54th Annual Design Automation Conference, Austin, TX, USA), 2017. pp. 1-6.
  26. D. Gottesman, The Heisenberg representation of quantum computers, arXiv preprint, 1998. https://doi.org/10.48550/ arXiv.quant-ph/9807006
  27. X. Fu, L. Lao, K. Bertels, and C. G. Almudever, A control microarchitecture for fault-tolerant quantum computing, Microprocess. Microsyst. 70 (2019), 21-30. https://doi.org/10.1016/j.micpro.2019.06.011
  28. M. A. Nielsen and I. Chuang, Quantum computation and quantum information, Cambridge university press, 2000.
  29. S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Phys. Rev. A 70 (2004), no. 5, 052328.
  30. C. Chamberland, P. Iyer, and D. Poulin, Fault-tolerant quantum computing in the Pauli or Clifford frame with slow error diagnostics, Quantum. 2 (2018), 43.
  31. A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F.T. Chong, and M. Martonosi, Scaffcc: a framework for compilation and analysis of quantum computing programs, (Proceedings of the 11th ACM Conference on Computing Frontiers, Cagliari, Italy), 2014. pp. 1-10.
  32. A. Cross, The IBM Q experience and Qiskit open-source quantum computing software, in APS march, Meeting Abstracts. 2018, L58. 003.
  33. S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and Noisy Ancillas, Phys. Rev. A 71 (2005), no. 2, 022316.