과제정보
This work was supported by National Natural Science Foundation of China (Grants 61971217, 61971218, and 61631020), National Natural Science Foundation of Jiangsu (Grant BK20200444), the fund of Sonar Technology Key Laboratory (Research on the theory and algorithm of signal processing for two-dimensional underwater acoustics coprime array) and the fund of Sonar Technology Key Laboratory (Range estimate and location technology of passive target via multiple array combination), and Jiangsu Key Research and Development Project (Grant BE2020101).
참고문헌
- C. Jutten and P. Comon, Chapter 1-Introduction, Handbook of Blind Source Separation, P. Comon and C. Jutten, (eds.), Academic Press, Oxford, 2010, pp. 1-22.
- J. Li, P. Stoica, and Z. Wang, On robust Capon beamforming and diagonal loading, (IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings, Hong Kong, China), Apr. 2003. https://doi.org/10.1109/ICASSP.2003.1199947
- X. Zhang and D. Xu, Angle estimation in bistatic MIMO radar using improved reduced dimension Capon algorithm, J. Syst. Eng. Electron. 24 (2013), no. 1, 84-89. https://doi.org/10.1109/JSEE.2013.00011
- R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag. 34 (1986), no. 3, 276-280. https://doi.org/10.1109/TAP.1986.1143830
- X. Zhang, L. Xu, L. Xu, and D. Xu, Direction of Departure (DOD) and Direction of Arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC, IEEE Commun. Lett. 14 (2010), no. 12, 1161-1163. https://doi.org/10.1109/LCOMM.2010.102610.101581
- R. Roy and T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Trans. Acoust. Speech Signal Process. 37 (1989), no. 7, 984-995. https://doi.org/10.1109/29.32276
- A. Hyvarinen and E. Oja, A fast fixed-point algorithm for independent component analysis, Neural Comput. 9 (1997), no. 7, 1483-1492. https://doi.org/10.1162/neco.1997.9.7.1483
- A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, A blind source separation technique using secondorder statistics, IEEE Trans. Signal Proc. 45 (1997), no. 2, 434-444. https://doi.org/10.1109/78.554307
- J. F. Cardoso and A. Souloumiac, Blind beamforming for nonGaussian signals, IEE Proc. F. (Radar Signal Process.) 140 (1993), no. 6, 362-370. https://doi.org/10.1049/ip-f-2.1993.0054
- P. Ioannides and C. A. Balanis, Uniform circular and rectangular arrays for adaptive beamforming applications, IEEE Antennas Wirel. Propag. Lett. 4 (2005), 351-354. https://doi.org/10.1109/LAWP.2005.857039
- B. Liao and S.-C. Chan, Adaptive beamforming for uniform linear arrays with unknown mutual coupling, IEEE Antennas Wirel. Propag. Lett. 11 (2012), 464-467. https://doi.org/10.1109/LAWP.2012.2196017
- Y. Zhou, Z. Fei, S. Yang, J. Kuang, S. Chen, and L. Hanzo, Joint angle estimation and signal reconstruction for coherently distributed sources in massive MIMO systems based on 2-D unitary ESPRIT, IEEE Access 5 (2017), 9632-9646. https://doi.org/10.1109/ACCESS.2017.2707557
- P. P. Vaidyanathan and P. Pal, Theory of sparse coprime sensing in multiple dimensions, IEEE Trans. Signal Process. 59 (2011), no. 8, 3592-3608. https://doi.org/10.1109/TSP.2011.2135348
- P. P. Vaidyanathan and P. Pal, Sparse sensing with co-prime samplers and arrays, IEEE Trans. Signal Process. 59 (2011), no. 2, 573-586. https://doi.org/10.1109/TSP.2010.2089682
- C. Zhou, Z. Shi, Y. Gu, and X. Shen, DECOM: DOA estimation with combined MUSIC for coprime array, (International Conference on Wireless Communications and Signal Processing, Hangzhou, China), Oct. 2013. https://doi.org/10.1109/WCSP. 2013.6677080
- Z. Weng and P. M. Djuric, A search-free DOA estimation algorithm for coprime arrays, Digital Signal Process. 24 (2014), 27-33. https://doi.org/10.1016/j.dsp.2013.10.005
- Q. Wu, F. Sun, P. Lan, G. Ding, and X. Zhang, Twodimensional direction-of-arrival estimation for co-prime planar arrays: A partial spectral search approach, IEEE Sensors J. 16 (2016), no. 14, 5660-5670. https://doi.org/10.1109/JSEN.2016.2567422
- W. Zheng, X. Zhang, and H. Zhai, Generalized coprime planar array geometry for 2-D DOA estimation, IEEE Commun. Lett. 21 (2017), no. 5, 1075-1078. https://doi.org/10.1109/LCOMM.2017.2664809
- Y. Gu, C. Zhou, N. A. Goodman, W.-Z. Song, and Z. Shi, Coprime array adaptive beamforming based on compressive sensing virtual array signal, (IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China), Mar. 2016. https://doi.org/10.1109/ICASSP.2016.7472224
- C. Zhou, Y. Gu, S. He, and Z. Shi, A robust and efficient algorithm for coprime array adaptive beamforming, IEEE Trans. Veh. Technol. 67 (2018), no. 2, 1099-1112. https://doi.org/10.1109/TVT.2017.2704610
- J. Li and M. Zhou, Improved trilinear decomposition-based method for angle estimation in multiple-input multiple-output radar, IET Radar Sonar Navigation 7 (2013), no. 9, 1019-1026. _eprint: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-rsn.2012.0345
- N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, Parallel factor analysis in sensor array processing, IEEE Trans. Signal Process. 48 (2000), no. 8, 2377-2388. https://doi.org/10.1109/78.852018
- N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, Blind PARAFAC receivers for DS-CDMA systems, IEEE Trans. Signal Process. 48 (2000), no. 3, 810-823. https://doi.org/10.1109/78.824675
- L. Xu, F. Wen, and X. Zhang, A novel unitary PARAFAC algorithm for joint DOA and frequency estimation, IEEE Commun. Lett. 23 (2019), no. 4, 660-663. https://doi.org/10.1109/LCOMM.2019.2896593
- X. Zhang, Z. Xu, L. Xu, and D. Xu, Trilinear decompositionbased transmit angle and receive angle estimation for multipleinput multiple-output radar, IET Radar, Sonar Navig. 5 (2011), no. 6, 626-631. https://doi.org/10.1049/iet-rsn.2010.0265
- X. Zhang, W. Zheng, W. Chen, and Z. Shi, Two-dimensional DOA estimation for generalized coprime planar arrays: a fastconvergence trilinear decomposition approach, Multidim. Syst. Sign. Process. 30 (2019), no. 1, 239-256. https://doi.org/10.1007/s11045-018-0553-9
- M. Sorensen, I. Domanov, and L. De Lathauwer, Coupled canonical polyadic decompositions and multiple shift invariance in array processing, IEEE Trans. Signal Process. 66 (2018), no. 14, 3665-3680. https://ieeexplore.ieee.org/document/8357500/ https://doi.org/10.1109/TSP.2018.2835423
- M. Sorensen and L. D. De Lathauwer, Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-$(L_r,n,L_r,n,1)$ terms-Part I: Uniqueness, SIAM J. Matrix Anal. Appl. 36 (2015), no. 2, 496-522. https://doi.org/10.1137/140956853
- M. Sorensen, I. Domanov, and L. De Lathauwer, Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank- $(L_{r,n},L_{r,n},1)$ terms-Part II: Algorithms, SIAM J. Matrix Anal. Appl. 36 (2015), no. 3, 1015-1045. https://doi.org/10.1137/140956865
- Yih-Min Chen, Ju-Hong Lee, and Chien-Chung Yeh, Twodimensional angle-of-arrival estimation for uniform planar arrays with sensor position errors, IEE Proc. F Radar Signal Process. UK 140 (1993), no. 1, 37.
- N. Vervliet, O. Debals, and L. De Lathauwer, Tensorlab 3.0 - Numerical optimization strategies for large-scale constrained and coupled matrix/tensor factorization, (50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA), Nov. 2016. https://doi.org/10.1109/ACSSC.2016.7869679