DOI QR코드

DOI QR Code

Noise reduction method using a variance map of the phase differences in digital holographic microscopy

  • Hyun-Woo Kim (Department of Computer Science and Networks, Kyushu Institute of Technology) ;
  • Myungjin Cho (School of ICT, Robotics, and Mechanical Engineering, IITC, Hankyong National University) ;
  • Min-Chul Lee (Department of Computer Science and Networks, Kyushu Institute of Technology)
  • Received : 2021.09.28
  • Accepted : 2021.12.28
  • Published : 2023.02.20

Abstract

The phase reconstruction process in digital holographic microscopy involves a trade-off between the phase error and the high-spatial-frequency components. In this reconstruction process, if the narrow region of the sideband is windowed in the Fourier domain, the phase error from the DC component will be reduced, but the high-spatial-frequency components will be lost. However, if the wide region is windowed, the 3D profile will include the high-spatial-frequency components, but the phase error will increase. To solve this trade-off, we propose the high-variance pixel averaging method, which uses the variance map of the reconstructed depth profiles of the windowed sidebands of different sizes in the Fourier domain to classify the phase error and the high-spatial-frequency components. Our proposed method calculates the average of the high-variance pixels because they include the noise from the DC component. In addition, for the nonaveraged pixels, the reconstructed phase data created by the spatial frequency components of the widest window are used to include the high-spatialfrequency components. We explain the mathematical algorithm of our proposed method and compare it with conventional methods to verify its advantages.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2017K1A3A1A19070753).

References

  1. D. Gabor, A new microscopic principle, Nature 161 (1948), 777-778.  https://doi.org/10.1038/161777a0
  2. P. Picart and S. Montresor, Optical holography, Elsevier, Amsterdam, 2020. 
  3. M. L. Piao, Y. L. Piao, and N. Kim, 3D image encryption based on computer-generated hologram in the fractional Fourier domain, (Practical Holography XXXIII: Displays, Materials, and Applications, San Francisco, CA, USA), 2019. https://doi.org/10.1117/12.2509161 
  4. M. L. Piao, H. Y. Wu, and N. Kim, 3D image encryption based on computer-generated hologram, (Digital Holography and Three-Dimensional Imaging, Bordeaux, France), May 2019. https://doi.org/10.1364/DH.2019.W3A.21 
  5. U. Abeywickrema, R. Gnawali, and P. P. Banerjee, Identification of 3D objects using correlation of holograms, (Proc. SPIE 10752, Applications of Digital Image Processing XLI, San Diego, SA, USA), 2018. https://doi.org/10.1117/12.2322668 
  6. B. Bordbar, H. Zhou, and P. P. Banerjee, 3D object recognition through processing of 2D holograms, Appl. Opt. 58 (2019), G197-G203.  https://doi.org/10.1364/AO.58.00G197
  7. I. Shevkunov, V. Katkovnik, D. Claus, G. Pedrini, N. V. Petrov, and K. Egiazarian, Spectral object recognition in hyperspectral holography with complex-domain denoising, Sensors 19 (2019), no. 23, 5188. 
  8. Z. Ren, Z. Xu, and E. Y. M. Lam, End-to-end deep learning framework for digital holographic reconstruction, Adv. Photon. 1 (2019), no. 1, 16004. 
  9. H. Wang, M. Lyu, and G. Situ, eHoloNet: a learning-based endto-end approach for in-line digital holographic reconstruction, Opt. Express 26 (2018), 22603-22614.  https://doi.org/10.1364/OE.26.022603
  10. M. Bedrossian, C. Lindensmith, and J. L. Nadeau, Digital holographic microscopy, a method for detection of microorganisms in plume samples from enceladus and other icy worlds, Astrobiology 17 (2017), 913-925.  https://doi.org/10.1089/ast.2016.1616
  11. A. Dong, K. Yetisen, X. Dong, F. Poller, M. Jakobi, Z. Liu, F. S. Bloise, and A. W. Koch, Low-pass filtering compensation in common-path digital holographic microscopy, Appl. Phys. Lett. 117 (2020), no. 12, 121105. 
  12. L. Huang, L. Yan, and B. Chen, Phase restoration of digital holographic microscopy with an adaptive reliability mask for phase unwrapping in microstructure testing, Opt. Lasers Eng. 138 (2021), 106416. 
  13. L. Huang, L. Yan, B. Chen, Y. Zhou, and T. Yang, Phase aberration compensation of digital holographic microscopy with curve fitting testing, Opt. Commun. 462 (2020), 125311. 
  14. B. Javidi, A. Markman, S. Rawat, T. O'Connor, A. Anand, and B. Adermariam, Sickle cell disease diagnosis based on spatiotemporal cell dynamics analysis using 3D printed shearing digital holographic microscopy, Opt. Express 26 (2018), 13614-13627.  https://doi.org/10.1364/OE.26.013614
  15. H. W. Kim, K. Inoue, M. Cho, and M. C. Lee, A study on realtime modification of the refractive index of a surrounding medium using a uniform microsphere in digital holographic microscopy, (EEET '20: Proceedings of the 2020 3rd International Conference on Electronics and Electrical Engineering Technology, Kitakyushu, Japan), Sept. 2020. https://doi.org/10.1145/3429536.3429539 
  16. J. Li, B. Li, and X. Zhang, Digital holographic microscopy measures underwater microorganism, (Second Target Recognition and Artificial Intelligence Summit Forum, Changchun, China), 2020. https://doi.org/10.1117/12.2553034 
  17. T. O'Connor, A. Anand, and B. Javidi, Field-portable microsphere-assisted high resolution digital holographic microscopy in compact and 3D-printed Mach-Zehnder Interferometer, OSA Contin. 3 (2020), 1013-1020.  https://doi.org/10.1364/OSAC.389832
  18. T. O'Connor, A. Doblas, and B. Javidi, Structured illumination in compact and field-portable 3D-printed shearing digital holographic microscopy for resolution enhancement, Opt. Lett. 44 (2019), 2326-2329.  https://doi.org/10.1364/OL.44.002326
  19. N. Palacios-Ortega, M. D. S. Hernandez-Montes, F. MendozaSantoyo, and J. M. Flores-Moreno, Measurement of morphology thickness and refractive index in a melanoma A375 cell line using digital holographic microscopy, Appl. Opt. 60 (2021), 815-822.  https://doi.org/10.1364/AO.410993
  20. N. Patel, S. Rawat, M. Joglekar, V. Chhaniwal, S. K. Dubey, T. O'Connorm, B. Javidi, and A. Anand, Compact and low-cost instrument for digital holographic microscopy immobilized micro-particles, Opt. Lasers Eng. 137 (2021), 106397. 
  21. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, Flipping interferometry and its application for quantitative phase microscopy in a micro-channel, Opt. Lett. 41 (2016), 2354-2357.  https://doi.org/10.1364/OL.41.002354
  22. S. Shin and Y. Yu, Fine metal mask 3-dimensional measurement by using scanning digital holographic microscope, J. Korean Phys. Soc. 72 (2018), 863-867.  https://doi.org/10.3938/jkps.72.863
  23. S. Shin and Y. Yu, Lensless reflection digital holographic microscope with a Fresnel-Bluestein transform, J. Korean Phys. Soc. 74 (2019), 98-101.  https://doi.org/10.3938/jkps.74.98
  24. S. M. Solis, M. S. Hernandez-Montes, and F. M. Santoyo, Identification of microorganisms using digital holographic microscopy, (Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI)), 2015, pp. 71-74. 
  25. F. Yi, I. Moon, and Y. H. Lee, Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy, J. Biomed. Opt. 20 (2015), no. 1, 16005. 
  26. Z. Zhong, H. Zhao, L. Cao, M. Shan, B. Liu, W. Lu, and H. Xie, Automatic cross filtering for off-axis digital holographic microscopy, Results Phys. 16 (2020), 102910. 
  27. Y. Hong, T. Shi, X. Wang, Y. Zhang, K. Chen, and G. Liao, Weighted adaptive spatial filtering in digital holographic microscopy, Opt. Commun. 382 (2017), 624-631.  https://doi.org/10.1016/j.optcom.2016.08.056
  28. J. Li, C. Dang, Y. Chen, Q. Luo, P. Zhao, J. Zhao, and C. Wang, Adaptive spatial filtering based on fuzzy C-means and phase in off-axis digital holographic microscopy, Opt. Eng. 60 (2021), no. 5, 51207. 
  29. H.-Y. Tu, W.-J. Hsiao, X.-J. Lai, Y.-C. Lin, and C.-J. Cheng, Synthetic aperture common-path digital holographic microscopy with spiral phase filter, J. Opt. 19 (2017), no. 6, 65604. 
  30. W. Xiao, Q. Wang, F. Pan, R. Cao, X. Wu, and L. Sun, Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy, Biomed. Opt. Express 10 (2019), no. 4, 1613-1626.  https://doi.org/10.1364/BOE.10.001613
  31. R. M. Goldstein, H. A. Zebker, and C. L. Werner, Satellite radar interferometry: Two-dimensional phase unwrapping, Radio Sci. 23 (1988), no. 4, 713-720.  https://doi.org/10.1029/RS023i004p00713
  32. R. C. Gonzalez and R. E. Woods, Digital image processing, Pearson, New York, 2018.