Acknowledgement
The corresponding author would like to record her deep appreciation and thanks to the Department of Science and Technology, Government of India, for the financial grant under the Young Scientist Scheme (YSS/2015/000986).
References
- S. Marsland, Machine Learning: An Algorithmic Perspective, Chapman and Hall/CRC, 2014.
- D. Cote, Using machine learning in communication networks [invited], IEEE/OSA J. Opt. Commun. Netw. 10 (2018), no. 10, D100-D109. https://doi.org/10.1364/JOCN.10.00D100
- J. Yu, W. Mo, Y. Huang, E. Ip, and D. C. Kilper, Model transfer of QoT prediction in optical networks based on artificial neural networks, IEEE/OSA J. Opt. Commun. Netw. 11 (2011), no. 10, C48-C57. https://doi.org/10.1364/JOCN.11.000C48
- Y. Zhao, B. Yan, Z. Li, W. Wang, Y. Wang, and J. Zhang, Coordination between control layer AI and on-board AI in optical transport networks [invited], IEEE/OSA J. Opt. Commun. Netw. 12 (2020), no. 1, A4-A57. https://doi.org/10.1364/JOCN.12.000A49
- F. N. Khan, Q. Fan, C. Lu, and A. P. T. Lau, An optical communication's perspective on machine learning and its applications, J. Light. Technol. 37 (2019), no. 2, 493-516. https://doi.org/10.1109/JLT.2019.2897313
- C. Natalino, M. Schiano, A. di Giglio, L. Wosinska, and M. Furdek, Experimental study of machine-learning-based detection and identification of physical-layer attacks in optical networks, J. Light. Technol. 37 (2019), no. 16, 4173-4182. https://doi.org/10.1109/JLT.2019.2923558
- C. de Cusatis, Optical interconnect networks for data communications, J. Light. Technol. 32 (2014), no. 4, 544-552. https://doi.org/10.1109/JLT.2013.2279203
- J. Suarez-Varela, A. Mestres, J. Yu, L. Kuang, H. Feng, P. Barlet-Ros, and A. Cabellos-Aparicio, Routing based on deep reinforcement learning in optical transport networks, (Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA), 2019, pp. 1-3.
- L. Wang, X. Wang, M. Tornatore, K. Joon Kim, S. Me Kim, D. Kim, K. Han, and B. Mukherjee, Scheduling with machinelearning-based flow detection for packet-switched optical data center networks, IEEE/OSA J. Opt. Commun. Netw. 10 (2018), no. 4, 365-375. https://doi.org/10.1364/JOCN.10.000365
- V. Chandra, D. Chadha, and R. G. Sangeetha, Bidirectional optical data packet switching interconnection network, US Patent US20130209102 A1.
- X. Chen, B. Li, R. Proietti, Z. Zhu, and S. J. B. Yoo, Self-taught anomaly detection with hybrid unsupervised/supervised machine learning in optical networks, J. Light. Technol. 37 (2019), no. 7, 1742-1749. https://doi.org/10.1109/JLT.2019.2902487
- J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. Kumar Singh, A. Jukan, and M. Chamania, Artificial intelligence (AI) methods in optical networks: A comprehensive survey, Opt. Switch. Netw. 28 (2018), 43-57. https://doi.org/10.1016/j.osn.2017.12.006
- D. Zibar, M. Piels, R. Jones, and C. G. Schaeffer, Machine learning techniques optical communication, J. Light. Technol. 34 (2015), no. 6, 1442-1452. https://doi.org/10.1109/JLT.2015.2508502
- T. Tanimura, T. Hoshida, T. Kato, S. Watanabe, and H. Morikawa, Convolutional neural network-based optical performance monitoring for optical transport networks, IEEE/OSA J. Opt. Commun. Netw. 11 (2019), no. 1, A52-A59. https://doi.org/10.1364/JOCN.11.000A52
- R. M. Morais and J. Pedro, Machine learning models for estimating quality of transmission in DWDM networks, IEEE/OSA J. Opt. Commun. Netw. 10 (2018), no. 10, D84-D99. https://doi.org/10.1364/JOCN.10.000D84
- F. Musumeci, C. Rottondi, G. Corani, S. Shahkarami, F. Cugini, and M. Tornatore, A tutorial on machine learning for failure management in optical networks, J. Light. Technol. 37 (2019), no. 16, 4125-4139. https://doi.org/10.1109/JLT.2019.2922586
- I. Martin, S. Troia, J. Alberto Hernandez, A. Rodriguez, F. Musumeci, G. Maier, R. Alvizu, and O. Gonzalez de Dios, Machine learning-based routing and wavelength assignment in software-defined optical networks, IEEE Trans. Netw. Service Manag. 16 (2019), no. 3, 871-883. https://doi.org/10.1109/TNSM.2019.2927867
- C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore, Machine learning method for quality of transmission prediction of unestablished lightpaths, IEEE/OSA J. Opt. Commun. Netw. 10 (2018), no. 2, A286-A297. https://doi.org/10.1364/JOCN.10.00A286
- S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore, Machine learning-based soft-failure detection and identification in optical networks, (Proceedings of IEEE Optical Fiber Communication Conf. Expo. (OFC), San Diego, CA, USA), 2018, pp. 1-3.
- S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. Leon-Garcia, Routing algorithms for network function virtualization enabled multicast topology on SDN, IEEE Trans. Netw. Service Manag. 12 (2015), no. 4, 580-594. https://doi.org/10.1109/TNSM.2015.2465371
- A. Shirmarz and A. Ghaffari, Performance issues and solutions in SDN-based data center: A survey, J. Supercomput. 10 (2020), no. 20, 7545-7593. https://doi.org/10.1007/s11227-020-03180-7
- Z. Wang, M. Zhang, D. Wang, C. Song, M. Liu, J. Li, L. Lou, and Z. Liu, Failure prediction using machine learning and time series in optical network, Opt. Express 25 (2017), no. 16, 18553-18565. https://doi.org/10.1364/OE.25.018553
- Y. Zhao, R. He, H. Chen, J. Zhang, Y. Ji, H. Zheng, Y. Lin, and X. Wang, Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks, Opt. Express 22 (2014), no. 8, 9538-9547. https://doi.org/10.1364/OE.22.009538
- Y. Zhao, B. Yan, D. Liu, Y. He, D. Wang, and J. Zhang, SOON: Self-optimizing optical networks with machine learning, Opt. Express 26 (2018), 28713-28726. https://doi.org/10.1364/OE.26.028713
- T. Jim'enez, J. C. Aguado, I. de Miguel, R. J. Dur'an, M. Angelou, N. Merayo, P. Fern'andez, R. M. Lorenzo, I. Tomkos, and E. J. Abril, A cognitive quality of transmission estimator for core optical networks, IEEE/OSA J. Light. Technol. 31 (2013), no. 6, 942-951. https://doi.org/10.1109/JLT.2013.2240257
- Y. Pointurier, M. Coates, and M. Rabbat, Cross-layer monitoring in transparent optical networks, IEEE/OSA J. Opt. Commun. Netw. 3 (2011), no. 3, 189-198. https://doi.org/10.1364/JOCN.3.000189
- N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, Lightpath establishment assisted by offline QoT estimation in transparent optical networks, IEEE/OSA J. Opt. Commun. Netw. 2 (2010), no. 11, 928-937. https://doi.org/10.1364/JOCN.2.000928
- M. Angelou, Y. Pointurier, D. Careglio, S. Spadaro, and I. Tomkos, Optimized monitor placement for accurate QoT assessment in core optical networks, IEEE/OSA J. Opt. Commun. Netw. 4 (2012), no. 1, 15-24. https://doi.org/10.1364/JOCN.4.000015
- I. Sartzetakis, K. Christodoulopoulos, C. Tsekrekos, D. Syvridis, and E. Varvarigos, Quality of transmission estimation in WDM and elastic optical networks accounting for space- spectrum dependencies, IEEE/OSA J. Opt. Commun. Netw. 8 (2016), no. 9, 676-688. https://doi.org/10.1364/JOCN.8.000676
- A. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, G. Meloni, L. Poti, L. Velasco, and P. Castoldi, BER degradation detection and failure identification in elastic optical networks, J. Light. Technol. 35 (2017), no. 21, 4595-4604. https://doi.org/10.1109/JLT.2017.2747223
- D. Rafique and L. Velasco, Machine learning for network automation: Overview, architecture, and applications [invited tutorial], IEEE/OSA J. Opt. Commun. Netw. 10 (2018), D126-D143. https://doi.org/10.1364/JOCN.10.00D126
- F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and M. Tornatore, An overview on application of machine learning techniques in optical networks, IEEE Commun. Surv. Tutor. 21 (2018), no. 2, 1383-1408.
- J. Thrane, J. Wass, M. Piels, J. C. Diniz, R. Jones, and D. Zibar, Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals, J. Light. Technol. 35 (2016), no. 4, 868-875. https://doi.org/10.1109/JLT.2016.2590989
- C. Chang and S. Kang, Using the reinforcement learning scheme to the priority-based routing and call admission control in WDM networks, J. Internet Technol. 13 (2012), no. 5, 793-801.
- G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, Optical switching: Switch fabrics, techniques, and architectures, J. Light. Technol. 21 (2003), no. 2, 384-405. https://doi.org/10.1109/JLT.2003.808766
- R. G. Sangeetha, V. Chandra, and D. Chadha, Optical interconnection bidirectional data vortex network: Architecture and performance analysis, J. Light. Technol. 31 (2013), no. 8, 1283-1294. https://doi.org/10.1109/JLT.2013.2246542
- R. G. Sangeetha, V. Chandra, and D. Chadha, Bidirectional data vortex optical interconnection network: BER performance by hardware simulation and evaluation of terminal reliability, J. Light. Technol. 32 (2014), no. 19, 3266-3276. https://doi.org/10.1109/JLT.2014.2341735
- B. Mukherjee, Optical WDM Networks, Springer, 2006.
- S. Mishra, V. Yadav, C. Hemanth, and R. G. Sangeetha, Hardware implementation of optical switching node for data center networks, Microw. Opt. Technol. Lett. 61 (2019), 843-846. https://doi.org/10.1002/mop.31630