DOI QR코드

DOI QR Code

A machine learning assisted optical multistage interconnection network: Performance analysis and hardware demonstration

  • Sangeetha Rengachary Gopalan (School of Electronics Engineering, Vellore Institute of Technology) ;
  • Hemanth Chandran (School of Electronics Engineering, Vellore Institute of Technology) ;
  • Nithin Vijayan (School of Electronics Engineering, Vellore Institute of Technology) ;
  • Vikas Yadav (School of Electronics Engineering, Vellore Institute of Technology) ;
  • Shivam Mishra (School of Electronics Engineering, Vellore Institute of Technology)
  • Received : 2021.07.27
  • Accepted : 2022.09.21
  • Published : 2023.02.20

Abstract

Integration of the machine learning (ML) technique in all-optical networks can enhance the effectiveness of resource utilization, quality of service assurances, and scalability in optical networks. All-optical multistage interconnection networks (MINs) are implicitly designed to withstand the increasing highvolume traffic demands at data centers. However, the contention resolution mechanism in MINs becomes a bottleneck in handling such data traffic. In this paper, a select list of ML algorithms replaces the traditional electronic signal processing methods used to resolve contention in MIN. The suitability of these algorithms in improving the performance of the entire network is assessed in terms of injection rate, average latency, and latency distribution. Our findings showed that the ML module is recommended for improving the performance of the network. The improved performance and traffic grooming capabilities of the module are also validated by using a hardware testbed.

Keywords

Acknowledgement

The corresponding author would like to record her deep appreciation and thanks to the Department of Science and Technology, Government of India, for the financial grant under the Young Scientist Scheme (YSS/2015/000986).

References

  1. S. Marsland, Machine Learning: An Algorithmic Perspective, Chapman and Hall/CRC, 2014. 
  2. D. Cote, Using machine learning in communication networks [invited], IEEE/OSA J. Opt. Commun. Netw. 10 (2018), no. 10, D100-D109.  https://doi.org/10.1364/JOCN.10.00D100
  3. J. Yu, W. Mo, Y. Huang, E. Ip, and D. C. Kilper, Model transfer of QoT prediction in optical networks based on artificial neural networks, IEEE/OSA J. Opt. Commun. Netw. 11 (2011), no. 10, C48-C57.  https://doi.org/10.1364/JOCN.11.000C48
  4. Y. Zhao, B. Yan, Z. Li, W. Wang, Y. Wang, and J. Zhang, Coordination between control layer AI and on-board AI in optical transport networks [invited], IEEE/OSA J. Opt. Commun. Netw. 12 (2020), no. 1, A4-A57.  https://doi.org/10.1364/JOCN.12.000A49
  5. F. N. Khan, Q. Fan, C. Lu, and A. P. T. Lau, An optical communication's perspective on machine learning and its applications, J. Light. Technol. 37 (2019), no. 2, 493-516.  https://doi.org/10.1109/JLT.2019.2897313
  6. C. Natalino, M. Schiano, A. di Giglio, L. Wosinska, and M. Furdek, Experimental study of machine-learning-based detection and identification of physical-layer attacks in optical networks, J. Light. Technol. 37 (2019), no. 16, 4173-4182.  https://doi.org/10.1109/JLT.2019.2923558
  7. C. de Cusatis, Optical interconnect networks for data communications, J. Light. Technol. 32 (2014), no. 4, 544-552.  https://doi.org/10.1109/JLT.2013.2279203
  8. J. Suarez-Varela, A. Mestres, J. Yu, L. Kuang, H. Feng, P. Barlet-Ros, and A. Cabellos-Aparicio, Routing based on deep reinforcement learning in optical transport networks, (Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA), 2019, pp. 1-3. 
  9. L. Wang, X. Wang, M. Tornatore, K. Joon Kim, S. Me Kim, D. Kim, K. Han, and B. Mukherjee, Scheduling with machinelearning-based flow detection for packet-switched optical data center networks, IEEE/OSA J. Opt. Commun. Netw. 10 (2018), no. 4, 365-375.  https://doi.org/10.1364/JOCN.10.000365
  10. V. Chandra, D. Chadha, and R. G. Sangeetha, Bidirectional optical data packet switching interconnection network, US Patent US20130209102 A1. 
  11. X. Chen, B. Li, R. Proietti, Z. Zhu, and S. J. B. Yoo, Self-taught anomaly detection with hybrid unsupervised/supervised machine learning in optical networks, J. Light. Technol. 37 (2019), no. 7, 1742-1749.  https://doi.org/10.1109/JLT.2019.2902487
  12. J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. Kumar Singh, A. Jukan, and M. Chamania, Artificial intelligence (AI) methods in optical networks: A comprehensive survey, Opt. Switch. Netw. 28 (2018), 43-57.  https://doi.org/10.1016/j.osn.2017.12.006
  13. D. Zibar, M. Piels, R. Jones, and C. G. Schaeffer, Machine learning techniques optical communication, J. Light. Technol. 34 (2015), no. 6, 1442-1452.  https://doi.org/10.1109/JLT.2015.2508502
  14. T. Tanimura, T. Hoshida, T. Kato, S. Watanabe, and H. Morikawa, Convolutional neural network-based optical performance monitoring for optical transport networks, IEEE/OSA J. Opt. Commun. Netw. 11 (2019), no. 1, A52-A59.  https://doi.org/10.1364/JOCN.11.000A52
  15. R. M. Morais and J. Pedro, Machine learning models for estimating quality of transmission in DWDM networks, IEEE/OSA J. Opt. Commun. Netw. 10 (2018), no. 10, D84-D99.  https://doi.org/10.1364/JOCN.10.000D84
  16. F. Musumeci, C. Rottondi, G. Corani, S. Shahkarami, F. Cugini, and M. Tornatore, A tutorial on machine learning for failure management in optical networks, J. Light. Technol. 37 (2019), no. 16, 4125-4139.  https://doi.org/10.1109/JLT.2019.2922586
  17. I. Martin, S. Troia, J. Alberto Hernandez, A. Rodriguez, F. Musumeci, G. Maier, R. Alvizu, and O. Gonzalez de Dios, Machine learning-based routing and wavelength assignment in software-defined optical networks, IEEE Trans. Netw. Service Manag. 16 (2019), no. 3, 871-883.  https://doi.org/10.1109/TNSM.2019.2927867
  18. C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore, Machine learning method for quality of transmission prediction of unestablished lightpaths, IEEE/OSA J. Opt. Commun. Netw. 10 (2018), no. 2, A286-A297.  https://doi.org/10.1364/JOCN.10.00A286
  19. S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore, Machine learning-based soft-failure detection and identification in optical networks, (Proceedings of IEEE Optical Fiber Communication Conf. Expo. (OFC), San Diego, CA, USA), 2018, pp. 1-3. 
  20. S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. Leon-Garcia, Routing algorithms for network function virtualization enabled multicast topology on SDN, IEEE Trans. Netw. Service Manag. 12 (2015), no. 4, 580-594.  https://doi.org/10.1109/TNSM.2015.2465371
  21. A. Shirmarz and A. Ghaffari, Performance issues and solutions in SDN-based data center: A survey, J. Supercomput. 10 (2020), no. 20, 7545-7593.  https://doi.org/10.1007/s11227-020-03180-7
  22. Z. Wang, M. Zhang, D. Wang, C. Song, M. Liu, J. Li, L. Lou, and Z. Liu, Failure prediction using machine learning and time series in optical network, Opt. Express 25 (2017), no. 16, 18553-18565.  https://doi.org/10.1364/OE.25.018553
  23. Y. Zhao, R. He, H. Chen, J. Zhang, Y. Ji, H. Zheng, Y. Lin, and X. Wang, Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks, Opt. Express 22 (2014), no. 8, 9538-9547.  https://doi.org/10.1364/OE.22.009538
  24. Y. Zhao, B. Yan, D. Liu, Y. He, D. Wang, and J. Zhang, SOON: Self-optimizing optical networks with machine learning, Opt. Express 26 (2018), 28713-28726.  https://doi.org/10.1364/OE.26.028713
  25. T. Jim'enez, J. C. Aguado, I. de Miguel, R. J. Dur'an, M. Angelou, N. Merayo, P. Fern'andez, R. M. Lorenzo, I. Tomkos, and E. J. Abril, A cognitive quality of transmission estimator for core optical networks, IEEE/OSA J. Light. Technol. 31 (2013), no. 6, 942-951.  https://doi.org/10.1109/JLT.2013.2240257
  26. Y. Pointurier, M. Coates, and M. Rabbat, Cross-layer monitoring in transparent optical networks, IEEE/OSA J. Opt. Commun. Netw. 3 (2011), no. 3, 189-198.  https://doi.org/10.1364/JOCN.3.000189
  27. N. Sambo, Y. Pointurier, F. Cugini, L. Valcarenghi, P. Castoldi, and I. Tomkos, Lightpath establishment assisted by offline QoT estimation in transparent optical networks, IEEE/OSA J. Opt. Commun. Netw. 2 (2010), no. 11, 928-937.  https://doi.org/10.1364/JOCN.2.000928
  28. M. Angelou, Y. Pointurier, D. Careglio, S. Spadaro, and I. Tomkos, Optimized monitor placement for accurate QoT assessment in core optical networks, IEEE/OSA J. Opt. Commun. Netw. 4 (2012), no. 1, 15-24.  https://doi.org/10.1364/JOCN.4.000015
  29. I. Sartzetakis, K. Christodoulopoulos, C. Tsekrekos, D. Syvridis, and E. Varvarigos, Quality of transmission estimation in WDM and elastic optical networks accounting for space- spectrum dependencies, IEEE/OSA J. Opt. Commun. Netw. 8 (2016), no. 9, 676-688.  https://doi.org/10.1364/JOCN.8.000676
  30. A. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, G. Meloni, L. Poti, L. Velasco, and P. Castoldi, BER degradation detection and failure identification in elastic optical networks, J. Light. Technol. 35 (2017), no. 21, 4595-4604.  https://doi.org/10.1109/JLT.2017.2747223
  31. D. Rafique and L. Velasco, Machine learning for network automation: Overview, architecture, and applications [invited tutorial], IEEE/OSA J. Opt. Commun. Netw. 10 (2018), D126-D143.  https://doi.org/10.1364/JOCN.10.00D126
  32. F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and M. Tornatore, An overview on application of machine learning techniques in optical networks, IEEE Commun. Surv. Tutor. 21 (2018), no. 2, 1383-1408.
  33. J. Thrane, J. Wass, M. Piels, J. C. Diniz, R. Jones, and D. Zibar, Machine learning techniques for optical performance monitoring from directly detected PDM-QAM signals, J. Light. Technol. 35 (2016), no. 4, 868-875.  https://doi.org/10.1109/JLT.2016.2590989
  34. C. Chang and S. Kang, Using the reinforcement learning scheme to the priority-based routing and call admission control in WDM networks, J. Internet Technol. 13 (2012), no. 5, 793-801. 
  35. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, Optical switching: Switch fabrics, techniques, and architectures, J. Light. Technol. 21 (2003), no. 2, 384-405.  https://doi.org/10.1109/JLT.2003.808766
  36. R. G. Sangeetha, V. Chandra, and D. Chadha, Optical interconnection bidirectional data vortex network: Architecture and performance analysis, J. Light. Technol. 31 (2013), no. 8, 1283-1294.  https://doi.org/10.1109/JLT.2013.2246542
  37. R. G. Sangeetha, V. Chandra, and D. Chadha, Bidirectional data vortex optical interconnection network: BER performance by hardware simulation and evaluation of terminal reliability, J. Light. Technol. 32 (2014), no. 19, 3266-3276.  https://doi.org/10.1109/JLT.2014.2341735
  38. B. Mukherjee, Optical WDM Networks, Springer, 2006. 
  39. S. Mishra, V. Yadav, C. Hemanth, and R. G. Sangeetha, Hardware implementation of optical switching node for data center networks, Microw. Opt. Technol. Lett. 61 (2019), 843-846. https://doi.org/10.1002/mop.31630