DOI QR코드

DOI QR Code

Exploring trends in blockchain publications with topic modeling: Implications for forecasting the emergence of industry applications

  • Jeongho Lee (School of Business and Technology Management, Korea Advanced Institute of Science and Technology) ;
  • Hangjung Zo (School of Business and Technology Management, Korea Advanced Institute of Science and Technology) ;
  • Tom Steinberger (School of Business and Technology Management, Korea Advanced Institute of Science and Technology)
  • 투고 : 2022.06.30
  • 심사 : 2022.10.17
  • 발행 : 2023.12.10

초록

Technological innovation generates products, services, and processes that can disrupt existing industries and lead to the emergence of new fields. Distributed ledger technology, or blockchain, offers novel transparency, security, and anonymity characteristics in transaction data that may disrupt existing industries. However, research attention has largely examined its application to finance. Less is known of any broader applications, particularly in Industry 4.0. This study investigates academic research publications on blockchain and predicts emerging industries using academia-industry dynamics. This study adopts latent Dirichlet allocation and dynamic topic models to analyze large text data with a high capacity for dimensionality reduction. Prior studies confirm that research contributes to technological innovation through spillover, including products, processes, and services. This study predicts emerging industries that will likely incorporate blockchain technology using insights from the knowledge structure of publications.

키워드

참고문헌

  1. W. Mougayar, The business blockchain: Promise, practice, and application of the next internet technology, John Wiley & Sons, 2016.
  2. J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, Where is current research on blockchain technology?-a systematic review, PLoS ONE 11 (2016), e0163477.
  3. H. Halaburda, Blockchain revolution without the blockchain? Commun. ACM. 61 (2018), 27-29. https://doi.org/10.1145/3225619
  4. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Decentralized Business Review, 2008, 21260.
  5. M. Linton, E. G. S. Teo, E. Bommes, C. Chen, and W. K. Hardle, Dynamic topic modelling for cryptocurrency community forums, in Applied Quantitative Finance, Springer, 2017, pp. 355-372.
  6. K. R. Lakhani and M. Iansiti, The truth about blockchain, Harv. Bus. Rev. 95 (2017), 119-127.
  7. D. Yermack, Donor governance and financial management in prominent us art museums, J. Cult. Econ. 41 (2017), 215-235. https://doi.org/10.1007/s10824-017-9290-4
  8. M. V. Fernandes and J. R. Verschoore, How blockchain affects the technological strategy of the financial industry: An analysis based on knowledge discovery in text, Fut. Stud. Res. J.: Trend. Stra. 12 (2020), 311-334. https://doi.org/10.24023/FutureJournal/2175-5825/2020.v12i2.498
  9. S. Miau and J.-M. Yang, Bibliometrics-based evaluation of the blockchain research trend: 2008-march 2017, Technol. Anal. Strateg. Manag. 30 (2018), 1029-1045. https://doi.org/10.1080/09537325.2018.1434138
  10. S. Kim, H. Park, and J. Lee, Word2vec-based latent semantic analysis (W2v-Lsa) for topic modeling: A study on blockchain technology trend analysis, Expert Syst. Appl. 152 (2020), 113401.
  11. F. Casino, T. K. Dasaklis, and C. Patsakis, A systematic literature review of blockchain-based applications: Current status, classification and open issues, Telemat. Inform. 36 (2019), 55-81. https://doi.org/10.1016/j.tele.2018.11.006
  12. H. D. White and K. W. McCain, Visualizing a discipline: An author co-citation analysis of information science, 1972-1995, J. Am. Soc. Inf. Sci. 49 (1998), 327-355.
  13. X. Han, Evolution of research topics in Lis between 1996 and 2019: An analysis based on latent Dirichlet allocation topic model, Scientometrics. 125 (2020), 2561-2595. https://doi.org/10.1007/s11192-020-03721-0
  14. C. Zhai, A. Velivelli, and B. Yu, A cross-collection mixture model for comparative text mining, (Proc. 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA), 2004, pp. 743-748.
  15. M. Ponweiser, Latent Dirichlet allocation in R, Diploma Thesis, Univ. of Vienna, 2012.
  16. D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res. 3 (2003), 993-1022.
  17. T. L. Griffiths and M. Steyvers, Finding scientific topics, Proc. Natl. Acad. Sci. 101 (2004), 5228-5235. https://doi.org/10.1073/pnas.0307752101
  18. D. M. Blei and J. D. Lafferty, Dynamic topic models, (Proc. 23rd Int. Conf. Machine Learning, Pittsburgh, PA, USA), 2006, pp. 113-120.
  19. A. B. Jaffe, Characterizing the "technological position" of firms, with application to quantifying technological opportunity and research spillovers, Res. Policy. 18 (1989), 87-97. https://doi.org/10.1016/0048-7333(89)90007-3
  20. J. D. Adams, Fundamental stocks of knowledge and productivity growth, J. Polit. Econ. 98 (1990), 673-702. https://doi.org/10.1086/261702
  21. M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, Blockchain technology: Beyond bitcoin, Appl. Innov. 2 (2016), 71.
  22. F. Glaser, Pervasive decentralisation of digital infrastructures: a framework for blockchain enabled system and use case analysis, (Proc. 50th Hawaii Int. Conf. System Sciences, Waikoloa, HI, USA).
  23. M. Risius and K. Spohrer, A blockchain research framework, Bus. Inf. Syst. Eng. 59 (2017), 385-409. https://doi.org/10.1007/s12599-017-0506-0
  24. K. Christidis and M. Devetsikiotis, Blockchains and smart contracts for the internet of things, IEEE Access. 4 (2016), 2292-2303. https://doi.org/10.1109/ACCESS.2016.2566339
  25. Y. Abuidris, R. Kumar, T. Yang, and J. Onginjo, Secure largescale e-voting system based on blockchain contract using a hybrid consensus model combined with sharding, ETRI J. 43 (2021), 357-370. https://doi.org/10.4218/etrij.2019-0362
  26. M. Swan, Blockchain: Blueprint for a new economy, O'Reilly Media, Inc, 2015.
  27. J. L. Zhao, S. Fan, and J. Yan, Overview of business innovations and research opportunities in blockchain and introduction to the special issue, Financ. Innov. 2 (2016), 28.
  28. M. Alharby and A. Van Moorsel, Blockchain-based smart contracts: a systematic mapping study, arXiv preprint. 2017. https://doi.org/10.48550/arXiv.1710.06372
  29. M. H. Miraz and M. Ali, Applications of blockchain technology beyond cryptocurrency, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1801.03528
  30. D. Koufogiannakis, L. Slater, and E. Crumley, A content analysis of librarianship research, J. Inf. Sci. 30 (2004), 227-239. https://doi.org/10.1177/0165551504044668
  31. C. Jacobi, W. Van Atteveldt, and K. Welbers, Quantitative analysis of large amounts of journalistic texts using topic modelling, Digit. J. 4 (2016), 89-106.
  32. S. Dang and P. H. Ahmad, Text mining: Techniques and its application, Int. J. Eng. Technol. Innov. 1 (2014), 22-25.
  33. K. Hornik and B. Grun, Topicmodels: An R package for fitting topic models, J. Stat. Softw. 40 (2011), 1-30.
  34. J. C. Campbell, A. Hindle, and E. Stroulia, Latent Dirichlet allocation: extracting topics from software engineering data, In The art and science of analyzing software data, Morgan Kaufmann, 2015, 139-159.
  35. S. I. Nikolenko, S. Koltcov, and O. Koltsova, Topic modelling for qualitative studies, J. Inf. Sci. 43 (2017), 88-102. https://doi.org/10.1177/0165551515617393
  36. D. M. Blei, Probabilistic topic models, Commun. ACM. 55 (2012), 77-84. https://doi.org/10.1145/2133806.2133826
  37. L. Du, W. Buntine, H. Jin, and C. Chen, Sequential latent Dirichlet allocation, Knowl. Inf. Syst. 31 (2012), 475-503. https://doi.org/10.1007/s10115-011-0425-1
  38. D. J. de Solla Price, Is technology historically independent of science? A study in statistical historiography, Technol. Cult. 6 (1965), 553-568. https://doi.org/10.2307/3101749
  39. E. Mansfield, Academic research and industrial innovation, Res. Policy. 20 (1991), 1-12. https://doi.org/10.1016/0048-7333(91)90080-A
  40. E. Mansfield, Academic research and industrial innovation: An update of empirical findings, Res. Policy. 26 (1998), 773-776. https://doi.org/10.1016/S0048-7333(97)00043-7
  41. R. R. Nelson, Institutions supporting technical advance in industry, Am. Econ. Rev. 76 (1986), 186-189.
  42. W. M. Cohen, R. R. Nelson, and J. P. Walsh, Links and impacts: The influence of public research on industrial R&D, Manag. Sci. 48 (2002), 1-23.
  43. L. Branstetter, Measuring the impact of academic science on industrial innovation the case of California's research universities, NBER, 2003, working paper.
  44. A. B. Jaffe, Real effects of academic research, Am. Econ. Rev. 79 (1989), 957-970. https://doi.org/10.1161/01.CIR.79.4.970
  45. Z. J. Acs, D. B. Audretsch, and M. P. Feldman, Real effects of academic research: Comment, Am. Econ. Rev. 82 (1992), 363-367.
  46. J. H. Grossman, P. P. Reid, and R. P. Morgan, Contributions of academic research to industrial performance in five industry sectors, J. Technol. Transf. 26 (2001), 143-152. https://doi.org/10.1023/A:1007848631448
  47. J. E. Jankowski, Trends in academic research spending, alliances, and commercialization, J. Technol. Transf. 24 (1999), 55-68. https://doi.org/10.1023/A:1007768603379
  48. B. Marciniec and J. Gulinski, Knowledge and technology transfer (KTT) from academia to industry in central European countries: The case of Poland, Mol. Cryst. Liq. Cryst. 374 (2002), 13-22. https://doi.org/10.1080/10587250210423
  49. A. Lockett, M. Wright, and S. Franklin, Technology transfer and universities' spin-out strategies, Small Bus. Econ. 20 (2003), 185-200. https://doi.org/10.1023/A:1022220216972
  50. S. Yusuf, Intermediating knowledge exchange between universities and businesses, Res. Policy. 37 (2008), 1167-1174. https://doi.org/10.1016/j.respol.2008.04.011
  51. M. B. Lieberman, A literature citation study of science-technology coupling in electronics, Proc. IEEE. 66 (1978), 5-13. https://doi.org/10.1109/PROC.1978.10834
  52. M. R. Darby and L. G. Zucker, Grilichesian breakthroughs: Inventions of methods of inventing and firm entry in nanotechnology, Ann. Econ. Stat. (2005), 143-164.
  53. Y. W. Chang and M. H. Huang, A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods, J. Am. Soc. Inf. Sci. Technol. 63 (2012), 22-33. https://doi.org/10.1002/asi.21649
  54. P. Liu and H. Xia, Structure and evolution of co-authorship network in an interdisciplinary research field, Scientometrics. 103 (2015), 101-134. https://doi.org/10.1007/s11192-014-1525-y
  55. D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and P. Group, Preferred reporting items for systematic reviews and meta-analyses: The prisma statement, Ann. Intern. Med. 151 (2009), 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  56. S. Bird, E. Klein, and E. Loper, Natural language processing with python: Analyzing text with the natural language toolkit, O'Reilly Media, Inc, 2009.
  57. W. McKinney, Python for data analysis: Data wrangling with Pandas, Numpy, and Ipython, O'Reilly Media, Inc, 2012.
  58. M. Umer, I. Ashraf, A. Mehmood, S. Ullah, and G. S. Choi, Predicting numeric ratings for Google apps using text features and ensemble learning, ETRI J. 43 (2021), 95-108. https://doi.org/10.4218/etrij.2019-0443
  59. E. S. Negara, D. Triadi, and R. Andryani, Topic modelling Twitter data with latent Dirichlet allocation method, (International Conference Electrical Engineering and Computer Science, Batam, Indonesia), 2019, pp. 386-390.
  60. D. O'Callaghan, D. Greene, J. Carthy, and P. Cunningham, An analysis of the coherence of descriptors in topic modeling, Expert Syst. Appl. 42 (2015), 5645-5657. https://doi.org/10.1016/j.eswa.2015.02.055
  61. S. Syed and M. Spruit, Full-text or abstract? examining topic coherence scores using latent Dirichlet allocation, (IEEE International Conference on Data Science and Advanced Analytics, Tokyo, Japan), 2017, pp.165-174.
  62. M. Steyvers and T. Griffiths, Probabilistic topic models, In Handbook of latent semantic analysis, Psychology Press, 2007, 439-460.
  63. A. Bhadury, J. Chen, J. Zhu, and S. Liu, Scaling up dynamic topic models, (Proc. 25th Int. Conf. World Wide Web, Montreal, Canada), 2016, pp. 381-390.
  64. E. C. Eze, S.-J. Zhang, E.-J. Liu, and J. C. Eze, Advances in vehicular ad-hoc networks (vanets): Challenges and road-map for future development, Int. J. Autom. Comput. 13 (2016), 1-18. https://doi.org/10.1007/s11633-015-0913-y
  65. S. Huh, S. Cho, and S. Kim, Managing Iot devices using blockchain platform, 2017, (19th International Conference Advanced Communication Technology, PyeongChang, Rep. of Korea), 2017, pp. 464-467.
  66. X. Wang and A. McCallum, Topics over time: a non-markov continuous-time model of topical trends, (Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA), 2006, pp. 424-433.
  67. C. Wang, D. Blei, and D. Heckerman, Continuous time dynamic topic models, arXiv preprint, 2012. https://doi.org/10.48550/arXiv.1206.3298