DOI QR코드

DOI QR Code

Transition-limited pulse-amplitude modulation technique for high-speed wireline communication systems

  • Eunji Song (Department of Nanoscale Semiconductor Engineering, Hanyang University) ;
  • Seonghyun Park (Department of Electronic Engineering, Hanyang University) ;
  • Jaeduk Han (Department of Electronic Engineering, Hanyang University)
  • Received : 2022.05.12
  • Accepted : 2022.09.21
  • Published : 2023.12.10

Abstract

This paper presents a transition-limited pulse-amplitude modulation (TLPAM) signaling method to enable a high data rate and robust wireline communications. TLPAM signaling addresses the impact of high intersymbol interference (ISI) ratios in conventional M-ary PAM signaling methods by limiting the maximum voltage transition level between adjacent symbols. The implementation of a TLPAM signaling encoder is realized by setting back the most significant bits (MSBs) in the queue. The correlation between TLPAM's maximum transition level, effective data rate, and eye width/height is analyzed with various channel loss parameters, followed by characterization and measurement results with a realistic channel setup. The analysis and experimental results reveal the effectiveness of the proposed TLPAM signaling scheme for achieving a high data rate with minimal interference.

Keywords

Acknowledgement

The research is sponsored in part by the Samsung Research Funding & Incubation Center of Samsung Electronics (SRFC-IT2001-02) and the NRF grants funded by MSIT (No. 2020M3H2A1076786 and No. 2021R1C1C1003634).

References

  1. B. Song, K. Kim, J. Lee, J. Chung, Y. Choi, and J. Burm, A 13.5-mW 10-Gb/s 4-PAM serial link transmitter in 0.13-um CMOS technology, IEEE Trans. Circuits Syst. II: Express. Briefs 61 (2014), no. 9, 646-650.
  2. J. Kim, A. Balankutty, R. Dokania, A. Elshazly, H. S. Kim, S. Kundu, S. Weaver, K. Yu, and F. O'Mahony, A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10nm CMOS, (IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA USA), Feb. 2018, pp. 102-104.
  3. E. Groen, C. Boecker, M. Hossain, R. Vu, S. Vamvakos, H. Lin, S. Li, M. Van Ierssel, P. Choudhary, N. Wang, and M. Shibata, 6.3 A 10-to-112Gb/s DSP-DAC-Based Transmitter with 1.2Vppd Output Swing in 7nm FinFET, (IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA), 2020, pp. 120-122.
  4. C. Wang, G. Zhu, Z. Zhang, and C. P. Yue, A 52-Gb/s sub1pJ/bit PAM4 receiver in 40-nm CMOS for low-power interconnects, (Symposium on VLSI Circuits, Kyoto, Japan), 2019, pp. 274-275.
  5. J. Im, K. Zheng, C. H. A. Chou, L. Zhou, J. W. Kim, S. Chen, Y. Wang, H. W. Hung, K. Tan, W. Lin, and A. B. Roldan, A 112Gb/s PAM-4 long-reach wireline transceiver using a 36-way time-interleaved SAR-ADC and inverter-based RX analog frontend in 7nm FinFET, (IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA), Feb. 2020, pp. 116-118.
  6. T. Ali, E. Chen, H. Park, R. Yousry, Y. M. Ying, M. Abdullatif, M. Gandara, C. C. Liu, P. S. Weng, H. S. Chen, and M. Elbadry, 6.2 A 460 mW 112Gb/s DSP-based transceiver with 38dB loss compensation for next-generation data centers in 7nm FinFET technology, (IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA), 2020, pp. 118-120.
  7. B. J. Yoo, D. H. Lim, H. Pang, J. H. Lee, S. Y. Baek, N. Kim, D. H. Choi, Y. H. Choi, H. Yang, T. Yoon, and S. H. Chu, 6.4 A 56Gb/s 7.7 mW/Gb/s PAM-4 wireline transceiver in 10nm FinFET using MM-CDR-Based ADC timing skew control and low-power DSP with approximate multiplier, (IEEE International Solid-State Circuits Conference ISSCC Digest of Technical Papers, San Francisco, CA, USA), 2020, pp. 122-124.
  8. L. Wang, Y. Fu, M. LaCroix, E. Chong, and A. C. Carusone, A 64gigabit per second PAM-4 transceiver utilizing an adaptive threshold ADC in 16nm FinFET, (IEEE International Solid-State Circuits Conference ISSCC Digest of Technical Papers, San Francisco, CA, USA), Feb. 2018, pp. 110-112.
  9. B. Vatankhahghadim, N. Wary, J. Bailey, and A. C. Chan Carusone, A study of discrete multitone modulation for wireline links beyond 100 Gb/s, IEEE Open J. Circuits Syst. 2 (2021), 78-90. https://doi.org/10.1109/OJCAS.2020.3040947
  10. J. Salinas, J. Cosson-Martin, M. Laghaei, H. Shakiba, and A. Sheikholeslami, Performance comparison of baseband signaling and discrete multi-tone for wireline communication, IEEE Open J. Circuits Syst. 2 (2021), 65-77. https://doi.org/10.1109/OJCAS.2020.3041239
  11. Y. Chun, M. Megahed, A. Ramachandran, and T. Anand, A PAM-8 wireline transceiver with linearity improvement technique and a time-domain receiver side FFE in 65 nm CMOS, IEEE J. Solid-State Circuits 57 (2022), no. 5, 1527-1541. https://doi.org/10.1109/JSSC.2022.3146097
  12. B. Min, K. Lee, and S. Palermo, A 20Gb/s triple-mode (PAM-2, PAM-4, and duobinary) transmitter, Microelectronics J. 43 (2011), no. 10, 1-4.
  13. B. Hu, Y. Du, R. Huang, J. Lee, Y. K. Chen, and M. C. F. Chang, A capacitor-DAC-based technique for pre-emphasis-enabled multi-level transmitters, IEEE Trans. Circuits Syst. II: Express Briefs 64 (2017), no. 9, 1012-1016.
  14. S. S. Chen, Z. Xu, B. Holden, and A. Tajalli, The sensitivity of ENRZ to crosstalk-in comparison to NRZ, PAM3, and PAM4, (IEEE International Joint EMC/SI/PI and EMC Europe Symposium, Raleigh, NC, USA), 2021, pp. 1116-1121.