DOI QR코드

DOI QR Code

Energy-efficient semi-supervised learning framework for subchannel allocation in non-orthogonal multiple access systems

  • S. Devipriya (Department of Electronics and Communication Engineering, St. Joseph's College of Engineering) ;
  • J. Martin Leo Manickam (Department of Electronics and Communication Engineering, St. Joseph's College of Engineering) ;
  • B. Victoria Jancee (Department of Electronics and Communication Engineering, St. Joseph's College of Engineering)
  • 투고 : 2022.06.23
  • 심사 : 2022.11.28
  • 발행 : 2023.12.10

초록

Non-orthogonal multiple access (NOMA) is considered a key candidate technology for next-generation wireless communication systems due to its high spectral efficiency and massive connectivity. Incorporating the concepts of multiple-input-multiple-output (MIMO) into NOMA can further improve the system efficiency, but the hardware complexity increases. This study develops an energy-efficient (EE) subchannel assignment framework for MIMO-NOMA systems under the quality-of-service and interference constraints. This framework handles an energy-efficient co-training-based semi-supervised learning (EE-CSL) algorithm, which utilizes a small portion of existing labeled data generated by numerical iterative algorithms for training. To improve the learning performance of the proposed EE-CSL, initial assignment is performed by a many-to-one matching (MOM) algorithm. The MOM algorithm helps achieve a low complex solution. Simulation results illustrate that a lower computational complexity of the EE-CSL algorithm helps significantly minimize the energy consumption in a network. Furthermore, the sum rate of NOMA outperforms conventional orthogonal multiple access.

키워드

참고문헌

  1. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. Vincent Poor, Application of non-orthogonal multiple access in LTE and 5G networks, IEEE Commun. Mag. 55 (2017), no. 2, 185-191. https://doi.org/10.1109/MCOM.2017.1500657CM
  2. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends, JSAC. 35 (2017), no. 10, 2181-2195.
  3. Y. Tao, L. Liu, S. Liu, and Z. Zhang, A survey: Several technologies of non-orthogonal transmission for 5G, China Commun. 12 (2015), no. 10, 1-15.
  4. Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, Analysis of non-orthogonal multiple access for 5G, China Commun. 13 (2016), no. Supplement2, 52-66. https://doi.org/10.1109/CC.2016.7405722
  5. O. Maraqa, A. S. Rajasekaran, S. Al-Ahmadi, H. Yanikomeroglu, and S. M. Sait, A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks, IEEE Commun. Surv. Tutor. 22 (2020), no. 4, 2192-2235. https://doi.org/10.1109/COMST.2020.3013514
  6. B. Makki, K. Chitti, A. Behravan, and M. -S. Alouini, A survey of NOMA: Current status and open research challenges, OJComs. 1 (2020), 179-189.
  7. D. Wan, M. Wen, X. Cheng, S. Mumtaz, and M. Guizani, A promising non-orthogonal multiple access based networking architecture: Motivation, conception, and evolution, IEEE Wirel. Commun. 26 (2019), no. 5, 152-159. https://doi.org/10.1109/MWC.2019.1900021
  8. D. Wan, R. Huang, M. Wen, G. Chen, F. Ji, and J. Li, A simple multicarrier transmission technique combining transmit diversity and data multiplexing for non-orthogonal multiple access, IEEE Trans. Veh. Technol. 70 (2021), no. 7, 7216-7220. https://doi.org/10.1109/TVT.2021.3084325
  9. D. Wan, M. Wen, F. Ji, Y. Liu, and Y. Huang, Cooperative NOMA systems with partial channel state information over nakagami- m fading channels, IEEE Trans. Commun. 66 (2018), no. 3, 947-958. https://doi.org/10.1109/TCOMM.2017.2772273
  10. X. Liu, Y. Liu, X. Wang, and H. Lin, Highly efficient 3-D resource allocation techniques in 5G for NOMA-enabled massive MIMO and relaying systems, J-Sac. 35 (2017), no. 12, 2785-2797.
  11. M. Zeng, A. Yadav, O. A. Dobre, and H. V. Poor, Energy-efficient power allocation for MIMO-NOMA with multiple users in a cluster, IEEE Access. 6 (2018), 5170-5181. https://doi.org/10.1109/ACCESS.2017.2779855
  12. X. Zhang, X. Zhu, and H. Zhu, Joint user clustering and multi-dimensional resource allocation in downlink MIMO-NOMA networks, IEEE Access. 7 (2019), 81783-81793. https://doi.org/10.1109/ACCESS.2019.2923713
  13. P. Liu, Y. Li, W. Cheng, W. Zhang, and X. Gao, Energy-efficient power allocation for millimeter wave beamspace MIMO-NOMA systems, IEEE Access. 7 (2019), 114582-114592. https://doi.org/10.1109/ACCESS.2019.2935495
  14. F. Fang, J. Cheng, and Z. Ding, Joint energy efficient subchannel and power pptimization for a downlink NOMA heterogeneous network, IEEE Trans. Veh. Technol. 68 (2019), no. 2, 1351-1364. https://doi.org/10.1109/TVT.2018.2881314
  15. J. Wang, H. Xu, L. Fan, B. Zhu, and A. Zhou, Energy-efficient joint power and bandwidth allocation for NOMA systems, IEEE Commun. Lett. 22 (2018), no. 4, 780-783.
  16. B. Di, L. Song, and Y. Li, Sub-Channel assignment, power allocation, and user scheduling for non-orthogonal multiple access etworks, IEEE Trans. Wirel. Commun. 15 (2016), no. 11, 7686-7698. https://doi.org/10.1109/TWC.2016.2606100
  17. Q. Wang and F. Zhao, Joint spectrum and power allocation for NOMA enhanced relaying networks, IEEE Access. 7 (2019), 27008-27016. https://doi.org/10.1109/ACCESS.2019.2900225
  18. X. Li, C. Li, and Y. Jin, Dynamic resource allocation for transmit power minimization in OFDM-based NOMA systems, IEEE Commun. Lett. 20 (2016), no. 12, 2558-2561.
  19. H. Zhang, B. Wang, C. Jiang, K. Long, A. Nallanathan, V. C. M. Leung, and H. V. Poor, Energy efficient dynamic resource optimization in NOMA system, IEEE Trans. Wirel. Commun. 17 (2018), no. 9, 5671-5683. https://doi.org/10.1109/TWC.2018.2844359
  20. J. Shi, W. Yu, Q. Ni, W. Liang, Z. Li, and P. Xiao, Energy efficient resource allocation in hybrid non-orthogonal multiple access systems, IEEE Trans. Commun. 67 (2019), no. 5, 3496-3511. https://doi.org/10.1109/TCOMM.2019.2893304
  21. J. Zhao, Y. Liu, K. K. Chai, Y. Chen, and M. Elkashlan, Joint subchannel and power allocation for NOMA enhanced D2D communications, IEEE Trans. Commun. 65 (2017), no. 11, 5081-5094. https://doi.org/10.1109/TCOMM.2017.2741941
  22. M. Liu, T. Song, and G. Gui, Deep cognitive perspective: Resource allocation for NOMA-based heterogeneous IoT with imperfect SIC, IEEE Internet Things J. 6 (2019), no. 2, 2885-2894. https://doi.org/10.1109/JIOT.2018.2876152
  23. H. Huang, Y. Yang, Z. Ding, H. Wang, H. Sari, and F. Adachi, Deep learning-based sum data rate and energy efficiency optimization for MIMO-NOMA systems, IEEE Trans. Wirel. Commun. 19 (2020), no. 8, 5373-5388. https://doi.org/10.1109/TWC.2020.2992786
  24. L. Sanguinetti, A. Zappone, and M. Debbah, Deep learning power allocation in massive MIMO, (52nd Asilomar conference on signals, systems, and computers, Pacific Grove, CA, USA), 2018, 1257-1261.
  25. G. Gui, H. Huang, Y. Song, and H. Sari, Deep learning for an effective nonorthogonal multiple access scheme, IEEE Trans. Veh. Technol. 67 (2018), no. 9, 8440-8450. https://doi.org/10.1109/TVT.2018.2848294
  26. H. Zhang, M. Feng, K. Long, G. K. Karagiannidis, and A. Nallanathan, Artificial intelligence-based resource allocation in ultradense networks: Applying event-triggered Q-learning algorithms, IEEE Veh. Technol. Mag. 14 (2019), no. 4, 56-63. https://doi.org/10.1109/MVT.2019.2938328
  27. Y. Cao, G. Zhang, G. Li, and J. Zhang, A deep Q-network based-resource allocation scheme for massive MIMO-NOMA, IEEE Commun. Lett. (2021), 3055348.
  28. H. Zhang, H. Zhang, K. Long, and G. K. Karagiannidis, Deep learning based radio resource management in NOMA networks: User association, subchannel and power allocation, IEEE Trans.Netw. Sci. Eng. 7 (2020), no. 4, 2406-2415. https://doi.org/10.1109/TNSE.2020.3004333
  29. H. Zhang, D. Zhang, W. Meng, and C. Li, User pairing algorithm with SIC in non orthogonal multiple access system, (IEEE Int. Conf. Communications, Kuala Lumpur, Malaysia), 2016, pp. 1-6. https://doi.org/10.1109/ICC.2016.7511620
  30. Z. Zhou and M. Li, Semisupervised regression with cotraining-style algorithms, IEEE Trans. Knowl. Data Eng. 19 (2007), no. 11, 1479-1493. https://doi.org/10.1109/TKDE.2007.190644
  31. Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, Matching theory for future wireless networks: Fundamentals and applications, IEEE Commun. Mag. 53 (2015), no. 5, 52-59.
  32. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, The MIT Press, 2016.