DOI QR코드

DOI QR Code

Channel estimation and detection with space-time transmission scheme in colocated multiple-input and multiple-output system

  • Pratibha Rani (Electronics Engineering, J.C. Bose University of Science and Technology, YMCA) ;
  • Arti M.K. (Electronics and Communications Engineering, Netaji Subhash University of Technology (East Campus)) ;
  • Pradeep Kumar Dimri (Electronics Engineering, J.C. Bose University of Science and Technology, YMCA)
  • Received : 2022.06.21
  • Accepted : 2022.11.14
  • Published : 2023.12.10

Abstract

In this study, a space-time transmission scheme is proposed to tackle the limitations of channel estimation with orthogonal pilot information in colocated multiple-input multiple-output systems with several transmitting and receiving antennas. Channel information is obtained using orthogonal pilots. Channel estimation introduces pilot heads required to estimate a channel. This leads to bandwidth insufficiency. As a result, trade-offs exist between the number of pilots required to estimate a channel versus spectral efficiency. The detection of data symbols is performed using the maximum likelihood decoding method as it provides a consistent approach to parameter estimation problems. The moment-generating function of the instantaneous signal-to-noise ratio is used to drive an approximate expression of the symbol error rate for the proposed scheme. Furthermore, the order of diversity is less by one than the number of receiver antennas used in the proposed scheme. The effect of the length of a pilot sequence on the proposed scheme's performance is also investigated.

Keywords

References

  1. L. H. Brandenburg and A. D. Wyner, Capacity of the Gaussian channel with nemory: The multivariate case, Bell Syst. Tech. J. 53 (1974), no. 5, 745-778. https://doi.org/10.1002/j.1538-7305.1974.tb02768.x
  2. E. Bjornson, J. Hoydis, and L. Sanguinetti, Massive MIMO has unlimited capacity, IEEE Trans. Wireless Commun. 17 (2018), no. 1, 574-590. https://doi.org/10.1109/TWC.2017.2768423
  3. T. L. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas, IEEE Trans. Wireless Commun. 9 (2010), no. 11, 3590-3600. https://doi.org/10.1109/TWC.2010.092810.091092
  4. M. Sakai, K. Kamohara, H. Iura, H. Nishimoto, K. Ishioka, Y. Murata, M. Yamamoto, A. Okazaki, N. Nonaka, S. Suyama, J. Mashino, A. Okamura, and Y. Okumura, Experimental field trials on MU-MIMO transmissions for high SHF wide-band massive MIMO in 5G, IEEE Trans. Wireless Commun. 19 (2020), no. 4, 2196-2207. https://doi.org/10.1109/TWC.2019.2962766
  5. H. Wang, J. Wang, and J. Fang, Grant-free massive connectivity in massive MIMO systems: Collocated versus cell-free, IEEE Wireless Commun. Lett. 10 (2021), no. 3, 634-638. https://doi.org/10.1109/LWC.2020.3044301
  6. C. V. Nahum, L. De Novoa Martins Pinto, V. B. Tavares, P. Batista, S. Lins, N. Linder, and A. Klautau, Testbed for 5G connected artificial intelligence on virtualized networks, IEEE Access 8 (2020), 223202-223213.
  7. H. N. Qureshi, M. Manalastas, S. M. A. Zaidi, A. Imran, and M. O. Al Kalaa, Service level agreements for 5G and beyond: Overview, challenges and enablers of 5G-healthcare systems, IEEE Access 9 (2021), 1044-1061. https://doi.org/10.1109/ACCESS.2020.3046927
  8. M. Saily, C. B. Estevan, J. J. Gimenez, F. Tesema, W. Guo, D. Gomez-Barquero, and D. Mi, 5G radio access network architecture for terrestrial broadcast services, IEEE Trans. Broadcast. 66 (2020), no. 2, 404-415. https://doi.org/10.1109/TBC.2020.2985906
  9. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, Massive MIMO for next generation wireless systems, IEEE Commun. Mag. 52 (2014), no. 2, 186-195.
  10. R. W. Heath and A. J. Paulraj, Switching between diversity and multiplexing in MIMO systems, IEEE Trans. Commun. 53 (2005), no. 6, 962-972. https://doi.org/10.1109/TCOMM.2005.849774
  11. L. Jacobs and M. Moeneclaey, Effect of MMSE channel estimation on BER performance of orthogonal space-time block codes in Rayleigh fading channels, IEEE Trans. Commun. 57 (2009), no. 5, 1242-1245. https://doi.org/10.1109/TCOMM.2009.05.070455
  12. P. Rani, M. K. Arti, P. K. Dimri, and M. Vashishath, Pilot based space-time transmission scheme for large MIMO system, (6th International Conference on Signal Processing and Integrated Networks, Noida, India), 2019. https://doi.org/10.1109/SPIN.2019.8711644
  13. C. Karnna, S. Udomsiri, and S. Phrompichai, Channel estimation based on pilot signal and iterative method for TDD based massive MIMO systems, (International Electrical Engineering Congress, Khon Kaen, Thailand), 2022, pp. 1-4.
  14. A. Misso, M. Kissaka, and B. Maiseli, Exploring pilot assignment methods for pilot contamination mitigation in massive MIMO systems, Cogent Eng. 7 (2020). https://doi.org/10.1080/23311916.2020.1831126
  15. L. Su and C. Yang, Fractional frequency reuse aided pilot decontamination for massive MIMO systems, (IEEE 81st Vehicular Technology Conference, Glasgow, UK), 2015, pp. 1-6.
  16. J. Ma, C. Liang, C. Xu, and L. Ping, On orthogonal and superimposed pilot schemes in massive MIMO noma systems, IEEE J. Selected Areas Commun. 35 (2017), no. 12, 2696-2707. https://doi.org/10.1109/JSAC.2017.2726019
  17. I. Jarin and S. P. Majumdar, Performance evaluation of MLD and ZFE in a MIMO ODFM system impaired by carrier frequency offset, phase noise and timing jitter, (IEEE International Conference on Telecommunications and Photonics, Dhaka, Bangladesh), 2017, pp. 122-126.
  18. E. Bjrnson, E. G. Larsson, and M. Debbah, Massive MIMO for maximal spectral efficiency: How many users and pilots should be allocated? IEEE Trans. Wireless Commun. 15 (2016), no. 2, 1293-1308. https://doi.org/10.1109/TWC.2015.2488634
  19. Z. Zhao, Z. Chen, and Y. Liu, Cell sectorization-based pilot assignment scheme in massive MIMO systems, (Wireless Telecommunications Symposium, New York, USA), 2015, pp. 1-5.
  20. X. Zhu, Z. Wang, L. Dai, and C. Qian, Smart pilot assignment for massive MIMO, IEEE Commun. Lett. 19 (2015), no. 9, 1644-1647. https://doi.org/10.1109/LCOMM.2015.2409176
  21. V. Mishra, P. K. Tripathi, P. Rana, and H. D. Joshi, Performance analysis of comb type pilot aided channel estimation in OFDM with different pilot sequences, (Tenth International Conference on Wireless and Optical Communications Networks, Bhopal, India), 2013, pp. 1-5.
  22. V. B. Niranjane and D. B. Bhoyar, Performance analysis of different channel estimation techniques, (International Conference on Recent Trends in Information Technology, Chennai, India), 2011, pp. 74-78.
  23. K. Kim, J. Lee, and J. Choi, Deep learning based pilot allocation scheme (DL-PAS) for 5G massive MIMO system, IEEE Commun. Lett. 22 (2018), no. 4, 828-831. https://doi.org/10.1109/LCOMM.2018.2803054
  24. C.-K. Wen, W.-T. Shih, and S. Jin, Deep learning for massive MIMO CSI feedback, IEEE Wireless Commun. Lett. 7 (2018), no. 5, 748-751. https://doi.org/10.1109/LWC.2018.2818160
  25. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inform. Theory 45 (1999), no. 5. https://doi.org/10.1109/18.771146
  26. V. Tarokh, N. Seshadri, S. Member, and A. R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans. Inform. Theory 44 (1998), no. 2. https://doi.org/10.1109/18.661517
  27. G. Ganesan and P. Stoica, Space-time block codes: A maximum SNR approach. IEEE Trans. Inform. Theory 47, (2001). https://doi.org/10.1109/18.923754
  28. M. K. Arti and S. K. Jindal, OSTBC Transmission in shadowedRician land mobile satellite links, IEEE Trans. Veh. Technol. 65 (2016), no. 7, 5771-5777. https://doi.org/10.1109/TVT.2015.2461437
  29. A. M.k. and M. R. Bhatnagar, Performance analysis of two-way AF MIMO relaying of OSTBCs with imperfect channel gains, IEEE Trans. Veh. Technol. 63 (2014), no. 8, 4118-4124. https://doi.org/10.1109/TVT.2014.2308638
  30. M. K. Arti, OSTBC Transmission in large MIMO systems, IEEE Commun. Lett. 20 (2016), no. 11, 2308-2311.
  31. T. L. Marzetta, J. Jose, A. Ashikhmin, and S. Vishwanath, Pilot contamination and precoding in multi-cell TDD systems, IEEE Trans. Wireless Commun. 10 (2014), no. 8, 2640-2651.
  32. H. Mohammadghasemi, M. F. Sabahi, and A. R. Forouzan, Pilot-decontamination in massive MIMO systems using interference alignment, IEEE Commun. Lett. 24 (2020), no. 3, 672-675. https://doi.org/10.1109/LCOMM.2019.2959780
  33. M. M. Shurman, O. Banimelhem, D. A. Al-Lafi, and S. J. AlZaro, Pilot contamination mitigation in massive MIMO-based 5G wireless communication networks, (9th International Conference on Information and Communication Systems, Irbid Jordan), 2018, pp. 192-197.
  34. G. Chu, K. Niu, W. Wu, and F. Yang, MGF-based analysis of spectrum sensing over K-μ fading channels for 5G cognitive networks, IEEE Access 6 (2018), 78650-78658. https://doi.org/10.1109/ACCESS.2018.2885132
  35. J. G. Proakis and M. Salehi, Digital Communications, 5th ed., McGraw Hill, 2007.
  36. X. Wang, Moment generating function of uncertain variable, (Proceedings - 2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhow, China), 2018, pp. 129-132.
  37. L. Hong and A. Garcia Armada, Bit error rate performance of MIMO MMSE receivers in correlated Rayleigh flat-fading channels, IEEE Trans. Veh. Technol. 60 (2011), no. 1, 313-317. https://doi.org/10.1109/TVT.2010.2090369
  38. N. Kim and H. Park, Bit error performance of convolutional coded MIMO system with linear MMSE receiver, IEEE Trans. Wireless Commun. 8 (2009), no. 7, 3420-3424. https://doi.org/10.1109/TWC.2009.080938
  39. S. Park and D. Yoon, An alternative expression for the symbolerror probability of MPSK in the presence of I/Q unbalance, IEEE Trans. Commun. 52 (2004), no. 12, 2079-2081. https://doi.org/10.1109/TCOMM.2004.838737
  40. M. K. Arti, A Space-time transmission scheme for large MIMO systems, IEEE Wirelss Commun. Lett. 7 (2018), no. 1. https://doi.org/10.1109/LWC.2017.2753800
  41. A. Jaiswal, M. Abaza, M. R. Bhatnagar, and V. K. Jain, An investigation of performance and diversity property of optical space shift keying-based FSO-MIMO system, IEEE Trans. Commun. 66 (2018), no. 9, 4028-4042. https://doi.org/10.1109/TCOMM.2018.2818702
  42. I. M. R. I.S. Gradshteyn, Table of Integrals, Series, and Product, Seventh Ed Edited by D. Z. Alan Jeffrey, Boston, 2007.
  43. M. K. Simon and M. S. Alouini, Digital Communication Over Fading Channels, Seventh, John Wiley, Hoboken, New Jersey, 2005.
  44. X.-B. Liang, Orthogonal designs with maximal rates, IEEE Trans. Inform. Theory 49 (2003), no. 10, 2468-2503. https://doi.org/10.1109/TIT.2003.817426