Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF 2020R1F1A1074832, NRF 2021R1F1A1058307, and NRF 2022R1A2C2006379), International Research & Development Program of the NRF funded by the Ministry of Science and ICT (Grant no. 2022K1A3A1A73080783), Nano·Material Technology Development Program through the NRF funded by the Ministry of Science, ICT and Future Planning (NRF 2009-0082580, Project number K210309005, K230208009), and Research-focused Department Promotion Project as a part of the University Innovation Support Program 2020 of Dankook University.
References
- M. Hangyo, M. Tani, and T. Nagashima, "Terahertz time-domain spectroscopy of solids: A review," Int. J. Infrared Millim. Waves 26, 1661-1690 (2005). https://doi.org/10.1007/s10762-005-0288-1
- S. H. Chun, K. W. Shin, H. J. Kim, S. Jung, J. Park, Y.-M. Bahk, H.-R. Park, J. Kyoung, D.-H. Choi, D.-S. Kim, G.-S. Park, J. F. Mitchell, and K. H. Kim, "Electromagnon with sensitive terahertz magnetochromism in a room-temperature magnetoelectric hexaferrite," Phys. Rev. Lett. 120, 27202 (2018).
- J. Kyoung, "Direct in situ observation of the percolation transition in VO2 thin film by peak-shift spectroscopy," Opt. Mater. Express 12, 1065-1073 (2022). https://doi.org/10.1364/OME.448427
- R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, "Higgs amplitude mode in the BCS superconductors Nb1-xTixNInduced by terahertz pulse excitation," Phys. Rev. Lett. 111, 57002 (2013).
- B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, "Chemical recognition in terahertz time-domain spectroscopy and imaging," Semicond. Sci. Technol. 20, S246 (2005).
- B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, "Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range," Appl. Phys. Lett. 100, 221101 (2012).
- J. T. Kindt and C. A. Schmuttenmaer, "Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy," J. Phys. Chem. 100, 10373-10379 (1996). https://doi.org/10.1021/jp960141g
- S. Mitryukovskiy, D. E. P. Vanpoucke, Y. Bai, T. Hannotte, M. Lavancier, D. Hourlier, G. Roos, and R. Peretti, "On the influence of water on THz vibrational spectral features of molecular crystals," Phys. Chem. 24, 6107-6125 (2022).
- J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, "Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting-A review," J. Pharm. Pharmacol. 59, 209-223 (2007).
- E. P. J. Parrott, Y. Sun, and E. Pickwell-MacPherson, "Terahertz spectroscopy: Its future role in medical diagnoses," J. Mol. Struct. 1006, 66-76 (2011). https://doi.org/10.1016/j.molstruc.2011.05.048
- G. J. Wilmink, B. L. Ibey, B. D. Rivest, J. E. Grundt, W. P. Roach, T. D. Tongue, B. J. Schulkin, N. Laman, X. G. Peralta, C. C. Roth, and C. Z. Cerna, "Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues," J. Biomed. Opt. 16, 047006 (2011).
- A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, "Terahertz spectroscopy of explosives and drugs," Mater. Today 11, 18-26 (2008).
- Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, "Detection and identification of explosives using terahertz pulsed spectroscopic imaging," Appl. Phys. Lett. 86, 241116 (2005).
- Y. Takida, K. Nawata, and H. Minamide, "Security screening system based on terahertz-wave spectroscopic gas detection," Opt. Express 29, 2529-2537 (2021). https://doi.org/10.1364/OE.413201
- W. Withayachumnankul and M. Naftaly, "Fundamentals of measurement in terahertz time-domain spectroscopy," J. Infrared Millim. Terahertz Waves 35, 610-637 (2014). https://doi.org/10.1007/s10762-013-0042-z
- P. U. Jepsen, "Phase retrieval in terahertz time-domain measurements: A "how to" tutorial," J. Infrared Millim. Terahertz Waves 40, 395-411 (2019). https://doi.org/10.1007/s10762-019-00578-0
- N. M. Burford and M. O. El-Shenawee, "Review of terahertz photoconductive antenna technology," Opt. Eng. 56, 010901 (2017).
- J. Neu and C. A. Schmuttenmaer, "Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS)," J. Appl. Phys. 124, 231101 (2018).
- D. T. Chuss, "A software-based lock-in measurement for student laboratories," Am. J. Phys. 86, 154-158 (2018). https://doi.org/10.1119/1.5011731
- D. Uhl, L. Bruder, and F. Stienkemeier, "A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy," Rev. Sci. Instrum. 92, 083101 (2021).
- YUFO-IC, "YUFO-IC website," (YUFO Electronics Limited), https://www.yufo-ic.cn/ (Accessed Date: May 5, 2023).
- Github, "SciPy 1.11.3," (SciPy, Published Date: Sep. 27, 2023), https://www.scipy.org/ (Accessed Date: May 5, 2023).
- RandomMoshe, "1 kHz square wave," (Youtube, Published Date: Mar. 25, 2018), https://www.youtube.com/watch?v=Fsob8tEdxnI&t=15s (Accessed Date: May 5, 2023).
- S. Watanabe and R. Shimano, "Compact terahertz time domain spectroscopy system with diffraction-limited spatial resolution," Rev. Sci. Instrum. 78, 103906 (2007).
- T. Probst, A. Rehn, and M. Koch, "Compact and low-cost THz QTDS system," Opt. Express 23, 21972-21982 (2015) https://doi.org/10.1364/OE.23.021972