References
- Abellan-Garcia, J. (2020), "Four-layer perceptron approach for strength prediction of UHPC", Constr. Build. Mater., 256, 119465. https://doi.org/10.1016/j.conbuildmat.2020.119465.
- ACI: 211.1-91 (2009), Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, American Concrete Institute.
- Al-Shamiri, A.K., Kim, J.H., Yuan, T.F. and Yoon, Y.S. (2019), "Modeling the compressive strength of high-strength concrete: An extreme learning approach", Constr. Build. Mater., 208, 204-219. https://doi.org/10.1016/j.conbuildmat.2019.02.165.
- Bao, Y., Valipour, M., Meng, W., Khayat, K.H. and Chen, G. (2017), "Distributed fiber optic sensor-enhanced detection and prediction of shrinkage-induced delamination of ultra-high-performance concrete overlay", Smart Mater. Struct., 26(8), 085009. https://doi.org/10.1088/1361-665X/aa71f4
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
- Cheng, Z., Zhang, Q., Bao, Y., Deng, P., Weri, C. and Li, M. (2021), "Flexural behavior of corrugated steel-UHPC composite bridge decks", Eng. Struct., 246, 113066. https://doi.org/10.1016/j.engstruct.2021.113066.
- Dao, D.V., Adeli, H., ly, H.B., Le, L.M., Le, V.M., Le, T.T. and Pham, B.T. (2020), "A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation", Sustain., 12(3), 830. https://doi.org/10.3390/su12030830.
- Du, J., Meng, W., Khayat, K.H., Bao, Y., Guo, P., Lyu, Z., Abu-obeidah, A., Nassif, H. and Wang, H. (2021), "New development of ultra-high-performance concrete (UHPC)", Compos. Part B: Eng., 224, 109220. https://doi.org/10.1016/j.compositesb.2021.109220.
- Farzad, M., Shafieifar, M. and azizinamini, A. (2019), "Experimental and numerical study on bond strength between conventional concrete and ultra-high performance concrete", Eng. Struct., 186, 297-305. https://doi.org/10.1016/j.engstruct.2019.02.030.
- Ghafari, E., Bandarabadi, M., Costa, H. and Julio, E. (2015), "Prediction of fresh and hardened state properties of UHPC: comparative study of statistical mixture design and an artificial neural network model", Mater. Civil Eng., 27, 04015017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001270.
- Ghafari, E., Costa, H. and Julio, E. (2015), "Statistical mixture design approach for eco-efficient UHPC", Cement Concrete Compos., 55, 17-25. https://doi.org/10.1016/j.cemconcom.2014.07.016.
- Guo, P., Meng, W. and Bao, Y. (2021), "Automatic identification and quantification of dense microcracks in high-performance fiber-reinforced cementitious composites through deep learning-based computer vision", Cement Concrete Res., 148, 106532. https://doi.org/10.1016/j.cemconres.2021.106532.
- Khayat, K.H., Meng, W., Vallurupalli, K. and Teng, L. (2019), "Rheological properties of ultra-high performance concrete-An overview", Cement Concrete Res., 124, 105828. https://doi.org/10.1016/j.cemconres.2019.105828.
- Liu, J., Wu, C., Su, Y., Li, J., Shao, R., Chen, G. and Liu, Z. (2018), "Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts", Eng. Struct., 173, 166-179. https://doi.org/10.1016/j.engstruct.2018.06.098.
- Liu, Y., Zhang, Q., Meng, W., Bao, Y. and Bu, Y. (2019), "Transverse fatigue behavior of steel-UHPC composite deck with large-size U-ribs", Eng. Struct., 180, 388-399. https://doi.org/10.1016/j.engstruct.2018.11.057.
- Meng, W., Khayat, K.H. and Bao, Y. (2018), "Flexural behaviors of fiber-reinforced polymer fabric reinforced ultra-high-performance concrete panels", Cement Concrete Compos., 93, 43-53. https://doi.org/10.1016/j.cemconcomp.2018.06.012.
- Meng, W., Valipour, M. and Khayat, KH. (2016), "Optimization and performance of cost-effective ultra-high performance concrete", Mater. Struct., 50(1), 29. https://doi.org/10.1617/s11527-016-0896-3.
- Nguyen, N.H., Abellan-Garcia, J., Lee, S. and Vo, T.P. (2024), "From machine learning to semi-empirical formulas for estimating compressive strength of Ultra-High Performance Concrete", Exp. Syst. Appl., 237, 121456. https://doi.org/10.1016/j.eswa.2023.121456.
- Qi, J., Cheng, Z., Zhou, K., Zhu, Y., Wang, J. and Bao, Y. (2021), "Experimental and theoretical investigations of UHPC-NC composite slabs subjected to punching Shear-flexural failure", Build. Eng., 44, 102662. https://doi.org/10.1016/j.jobe.2021.102662.
- Qu, D., Cai, X. and Chang, W. (2018), "Evaluating the effects of steel fibers on mechanical properties of ultra-high performance concrete using artificial neural networks", Appl. Sci., 8, 1120. https://doi.org/10.3390/app8071120.
- Regalwar, K., Heard, W.F., Williams, B.A., Kumar, D. and Ranade, R. (2020), "On enhancing mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement", Cement Concrete Compos., 105, 103422. https://doi.org/10.1016/j.cemconcomp.2019.103422.
- Wang, J., Liu, J., Wang, Z., Liu, T. and Zhang, J. (2021), "Cost-effective UHPC for accelerated bridge construction: material properties, structural elements, and structural applications", Bridge Eng., 26, 04020117. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001660.
- Wu, Z., Khayat, K.H. and Shi, C. (2019), "Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content", Cement Concrete Res., 123, 105786. https://doi.org/10.1016/j.cemconres.2019.105786.
- Wu, Z., Shi, C. and Khayat, K.H. (2019), "Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape", Compos. Part B: Eng., 174, 107021. https://doi.org/10.1016/j.compositesb.2019.107021.
- Yin, H., Teo, W. and Shirai, K. (2017), "Experimental investigation on the behavior of reinforced concrete slabs strengthened with ultra-high performance concrete", Constr. Build. Mater., 155, 463-474. https://doi.org/10.1016/j.conbuildmat.2017.08.077.
- Zmetra, K.M., McMullen, K.F., Zaghi, A.E. and Wille, K. (2017), "Experimental study of UHPC repair for corrosion-damaged steel girder ends", Bridge Eng., 22(8), 04017037. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001067.