DOI QR코드

DOI QR Code

Understanding of the Working Principle of Field-effect Transistor (FET) Biosensor with the Review Of Experimental Measurement Set-up

전계효과트랜지스터(FET) 바이오센서 실험 셋업 분석을 통한 동작원리 이해

  • 이국녕 ((주)위즈바이오솔루션 진단기기연구소)
  • Received : 2023.11.14
  • Accepted : 2023.11.30
  • Published : 2023.11.30

Abstract

Over the past few decades, considerable research has been conducted on field-effect transistor (FET) biosensors; however, other than electrochemical sensors for pH, they have not reached the commercialization stage and still remain at the basic research level. Although several reports have been published on experiments with real biological samples, no reports exist of developments that have reached commercialization or finalized approval for use. In this paper, we explain the reason for the experiments of FET biosensors to induce spurious signals in an experimental setup and explain the existence of misunderstandings regarding the operating principle of FET biosensors owing to the spurious signals. Based on the thoughtful review of the results of previously published papers, we show that the electrochemical read-out principle of FET biosensors requires our intensive understanding of the interfacial potential between the solution and the sensor electrode for further progress in the FET biosensor research.

Keywords

References

  1. M. J. Schoning and A. Poghossian, "Recent advances in biologically sensitive field-effect transistor(BioFETs)", Analyst, Vol. 127, No. 9, pp. 1137-1151, 2002. https://doi.org/10.1039/B204444G
  2. X. Duan, Y. Li, N. K. Rajan, D. A. Routenberg, Y. Modis, and M. A. Reed, "Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors", Nat. Nanotechnol., Vol. 7, No. 6, pp. 401-407, 2012. https://doi.org/10.1038/nnano.2012.82
  3. E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, "Label-free biomarker detection from whole blood", Nat. Nanotechnol., Vol. 5, No. 2, pp. 138-142, 2010. https://doi.org/10.1038/nnano.2009.353
  4. E. Stern, A. Vacic, and M. A. Reed, "Semiconducting nanowire field-effect transistor biomolecular sensors", IEEE Trans. Electron Devices, Vol. 55, No. 11, pp. 3119-3130, 2008. https://doi.org/10.1109/TED.2008.2005168
  5. A. Poghossian and M. J. Schoning, "Label-free sensing of biomolecules with field-effect devices for clinical applications", Electroanalysis, Vol. 26, No. 6, pp. 1197-1213, 2014. https://doi.org/10.1002/elan.201400073
  6. A. J. Qavi, A. L. Washburn, J. Y. Byeon, and R. C. Bailey, "Label-free technologies for quantitative muliparameter biological analysis", Anal. Bioanal. Chem., Vol. 394, No. 1, pp. 121-135, 2009. https://doi.org/10.1007/s00216-009-2637-8
  7. A. Vacic, J. M. Criscione, E. Stern, N. K. Rajan, T. Fahmy, and M. A. Reed, "Muliplexed SOI BioFETs", Biosens. Bioelectron., Vol. 28, No. 1, pp. 239-242, 2001. https://doi.org/10.1016/j.bios.2011.07.025
  8. S. Gupta, M. Elias, X. Wen, J. Shapiro, L. Brillson, W. Lu, and S. C. Lee, "Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors", Biosens. Bioelectron., Vol. 24, No. 4, pp. 505-511, 2008. https://doi.org/10.1016/j.bios.2008.05.011
  9. A. Star, J. C. P. Gabriel, K. Bradley, and G. Gruner, "Electronic detection of specific protein binding using nanotube FET devices", Nano Lett., Vol. 3, pp. 459-463, 2003. https://doi.org/10.1021/nl0340172
  10. C. S. Lee, S. K. Kim, and M. Kim, "Ion-sensitive field-effect transistor for biological sensing", Sensors, Vol. 9, No. 9, pp. 7111-7131, 2009. https://doi.org/10.3390/s90907111
  11. X. P. A. Gao, G. Zheng, and C. M. Lieber, "Subthreshold regime has the optimal sensitivity for nanowire FET biosensors", Nano Lett., Vol. 10, No. 2, pp. 547-552, 2010. https://doi.org/10.1021/nl9034219
  12. M. Y. Shen, B. R. Li, and Y. K. Li, "Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultrasensitive", Biosens. Bioelectron., Vol. 60, pp. 101-111, 2014. https://doi.org/10.1016/j.bios.2014.03.057
  13. P. R. Nair and M. A. Alam, "Design Considerations of Silicon Nanowire Biosensors", IEEE Trans. Electron Devices, Vol. 54, No. 12, pp. 3400-3408, 2007. https://doi.org/10.1109/TED.2007.909059
  14. E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye screening length on nanowire field effect transistor sensors", Nano Lett., Vol. 7, No. 11, pp. 3405-3409, 2007.
  15. A. Kim, C. S. Ah, C. W. Park, J.-H. Yang, T. Kim, C.-G. Ahn, S. H. Park, and G. Y. Sung, "Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors", Biosens. Bioelectron., Vol. 25, No. 7, pp. 1767-1773, 2010. https://doi.org/10.1016/j.bios.2009.12.026
  16. B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang, G. J. Zhang, "Ultrasensitive label-free detection of pna-dna hybridization by reduced graphene oxide field-effect transistor biosensor", ACS Nano, Vol. 8, No. 3, pp. 2632-2638, 2014. https://doi.org/10.1021/nn4063424
  17. M. Kaisti, A. Kerko, E. Aarikka, P. Saviranta, Z. Boeva, T. Soukka, and A. Lehmusvuori, "Real-time wash-free detection of unlabeled PNA DNA hybridization using discrete FET sensor", Sci. Rep., Vol. 7, No. 1, pp. 15734(1)-5734(8), 2017. https://doi.org/10.1038/s41598-016-0028-x
  18. H.-L. Kang, S. Yoon, D.-k. Hong, S. Song, Y. J. Kim, W.-H. Kim, W.-K. Seong, and K.-N. Lee, "Verification of Operating Principle of Nano Field-effect Transistor Biosensor with an Extended Gate Electrode", BioChip J., Vol. 14, pp. 381-389, 2020. https://doi.org/10.1007/s13206-020-4410-1
  19. P. R. Nair and M. A. Alam, "Screening-limited response of nanobiosensors", Nano Lett., Vol. 8, No. 5, pp. 1281-1285, 2008. https://doi.org/10.1021/nl072593i
  20. K. I. Chen, B. R. Li, and Y. T. Chen, "Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation", Nano Today, Vol. 6, No. 2, pp. 131-154, 2011. https://doi.org/10.1016/j.nantod.2011.02.001
  21. V. Pachauri and S. Ingebrandt, "Biologically sensitive field-effect transistors: from ISFET to NanoFETs", Essays Biochem., Vol. 60, pp. 81-90, 2016. https://doi.org/10.1042/EBC20150009
  22. M. Kaisti, "Detection principles of biological and chemical FET sensors", Biosens. Bioelectron., Vol. 98, pp. 437-448, 2017. https://doi.org/10.1016/j.bios.2017.07.010
  23. B. M. Lowe, K. Sun, I. Zeimpekis, C. K. Skylaris, and N. G. Green, "Field-effect sensors - from pH sensing to bio-sensing: sensitivity enhancement using streptavidin-biotin as a model system", Analyst, Vol. 142, pp. 4173-4200, 2017. https://doi.org/10.1039/C7AN00455A
  24. C. A. Vu and W. Y. Chen, "Field-effect transistor biosensors for biomedical applications: recent advances and future prospects", Sensors, Vol. 19, No. 19, pp. 4214(1)-4214(22), 2019. https://doi.org/10.1109/JSEN.2018.2879233
  25. W. Guan, X. Duan, and M. A. Reed, "Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors", Biosens. Bioelectron., Vol. 51, pp. 225-231, 2014. https://doi.org/10.1016/j.bios.2013.07.061
  26. T. Minamiki, T. Minami, R. Kurita, O. Niwa, S. Wakida, K. Fukuda, D. Kumaki, and S. Tokito, "A label-free immunosensor for IgG based on an extended-gate type organic field effect transistor", Materials, Vol. 7, No. 9, pp. 6843-6852, 2014. https://doi.org/10.3390/ma7096843
  27. T. Goda and Y. Miyahara, "Label-free and reagent-less protein biosensing using aptamer-modified extended-gate field-effect transistor", Biosens. Bioelectron., Vol. 45, pp. 89-94, 2013. https://doi.org/10.1016/j.bios.2013.01.053
  28. Y.-L. Chin, J.-C. Chou, T.-P. Sun, H.-K. Liao, W.-Y. Chung, and S.-K. Hsiung, "A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process", Sens. Actuators B, Vol. 75, No. 1-2, pp. 36-42, 2001. https://doi.org/10.1016/S0925-4005(00)00739-5
  29. S. Song, Y. J. Kim, H. L. Kang, S. Yoon, D. K. Hong, W. H. Kim, I. S. Shin, W. K. Seong, and K. N. Lee, "Sensitivity Improvement in Electrochemical Immunoassays Using Antibody Immobilized Magnetic Nanoparticles with a Clean ITO Working Electrode", BioChip J., Vol. 14, pp. 308-316, 2020. https://doi.org/10.1007/s13206-020-4309-x
  30. L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, "Study of indium tin oxide thin film for separative extended gate ISFET", Mater. Chem. Phys., Vol. 70, No. 1, pp. 12-16, 2001. https://doi.org/10.1016/S0254-0584(00)00373-4
  31. T. N. T. Nguyen, Y. G. Seol, and N. E. Lee, "Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing", Org. Electron., Vol. 12, No. 11, pp. 1815-1821, 2011. https://doi.org/10.1016/j.orgel.2011.07.009
  32. B. Reddy, B. R. Dorvel, J. Go, P. R. Nair, O. H. Elibol, G. M. Credo, J. S. Daniels, E. K. C. Chow, X. Su, M. Varma, M. A. Alam, and R. Bashir, "High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing", Biomed. Microdevices, Vol. 13, pp. 335- 344 2011. https://doi.org/10.1007/s10544-010-9497-z
  33. P. D. Batista and M. Mulato, "ZnO extended-gate field-effect transistor as pH sensors", Appl. Phys. Lett., Vol. 87, No. 14, p. 143508, 2005.
  34. E. D. Minot, A. M. Janssens, I. Heller, H. A. Heering, C. Dekker, and S. G. Lemay, "Carbon nanotube biosensors: The critical role of the reference electrode", Appl. Phys. Lett., Vol. 91, No. 9, p. 093507, 2007.
  35. F.-S. Zhou and Q.-H. Wei, "Scaling laws for nanoFET sensors", Nanotechnology, Vol. 19, No. 1, pp. 015504(1)-015504(6), 2008.
  36. A. Das, D. H. Ko, C.-H. Chen, L.-B. Chang, C.-S. Lai, F.-C. Chu, L. Chow, and R.- M. Lin, "Highly sensitive palladium oxide thin film extended gate FETs as pH sensor", Sens. Actuators B, Vol. 205, pp. 199-205, 2014. https://doi.org/10.1016/j.snb.2014.08.057
  37. K. Suna, I. Zeimpekisa, C. Hua, N. M. J. Ditshegoa, O. Thomasb, M. R. R. de Planquea, H. M. H. Chonga, H. Morgana, and P. Ashburna, "Effect of subthreshold slope on the sensitivity of nanoribbon sensors", Nanotechnology, Vol. 27, pp. 285501(1)-285501(9), 2016.
  38. Y. T. Seo, K. N. Lee, K. J. Jang, M. H. Lee, H. S. Lee, W. K. Seong, and Y. K Kim, "Negative ions detection in air using nano field-effect-transistor (nanoFET)", Micro Nano Sys. Lett., Vol. 2, pp. 1-6, 2014. https://doi.org/10.1186/s40486-014-0001-z
  39. K.-N. Lee, Y.-T. Seo, Y.-K. Kim, S. Yoon, M.-H. Lee, and W. Seong, "Detection ions in air using a nano field-effect transistor (nanoFET)", Microelectron. Eng., Vol. 158, pp. 75-79, 2016. https://doi.org/10.1016/j.mee.2016.03.032
  40. H. L. Kang, S. Yoon, D. K. Hong, W. H. Kim, W. K. Seong, and K. N. Lee, "Ion balance detection using nano field-effect transistor with an extended gate electrode", Micro and Nano Syst. Lett., Vol. 8, No. 1, pp. 1-6, 2020. https://doi.org/10.1186/s40486-019-0101-x
  41. K.-N. Lee, Y.-T. Seo, S. Yoon, M.-H. Lee, Y.-K. Kim, and W. Seong, "Chemical gating experiment of a nano-field-effect transistor sensor using the detection of negative ions in air", Sens. Actuators B, Vol. 236, pp. 654-658, 2016. https://doi.org/10.1016/j.snb.2016.06.057
  42. H.-L. Kang, S. Yoon, D.-K. Hong, W.-H. Kim, W. K. Seong, and K.-N. Lee, "I-V hysteresis characteristics of nano-field effect transistor (nanoFET) sensor with a floating metal gate electrode", Microelectron. Eng., Vol. 213, pp. 35-40, 2019. https://doi.org/10.1016/j.mee.2019.04.014