DOI QR코드

DOI QR Code

Asymmetric Metal-Semiconductor-Metal Al0.24Ga0.76N UV Sensors with Surface Passivation Effect Under Local Joule Heating

  • Byeong-Jun Park (School of Electrical Engineering, Kyungpook National University) ;
  • Sung-Ho Hahm (School of Electrical Engineering, Kyungpook National University)
  • Received : 2023.11.20
  • Accepted : 2023.11.24
  • Published : 2023.11.30

Abstract

An asymmetric metal-semiconductor-metal Al0.24Ga0.76N ultraviolet (UV) sensor was fabricated, and the effects of local Joule heating were investigated. After dielectric breakdown, the current density under a reverse bias of 2.0 V was 1.1×10-9 A/cm2, significantly lower than 1.2×10-8 A/cm2 before dielectric breakdown; moreover, the Schottky behavior of the Ti/Al/Ni/Au electrode changed to ohmic behavior under forward bias. The UV-to-visible rejection ratio (UVRR) under a reverse bias of 7.0 V before dielectric breakdown was 87; however, this UVRR significantly increased to 578, in addition to providing highly reliable responsivity. Transmission electron microscopy revealed interdiffusion between adjacent layers, with nitrogen vacancies possibly formed owing to local Joule heating at the AlGaN/Ti/Al/Ni/Au interfaces. X-ray photoelectron microscopy results revealed decreases in the peak intensities of the O 1s binding energies associated with the Ga-O bond and OH-, which act as electron-trapping states on the AlGaN surface. The reduction in dark current owing to the proposed local heating method is expected to increase the sensing performance of UV optoelectronic integrated devices, such as active-pixel UV image sensors.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (No.2020R1I1A3A04037962). This work was also supported by the BK21 Four Project, funded by the Ministry of Education, Korea (No. 4199990113966).

References

  1. G. Wang, H. Lu, D. Chen, F. Ren, R. Zhang, and Y. Zheng, "High Quantum Efficiency GaN-Based p-i-n Ultraviolet Photodetectors Prepared on Patterned Sapphire Substrates", IEEE Photon. Technol. Lett., Vol. 25, No. 7, pp. 652-654, 2013.  https://doi.org/10.1109/LPT.2013.2248056
  2. Q. Cai, H. You, J. Wang, B. Liu, Z. Xie, D. Chen, H. Lu, Y. Zheng, and R. Zhang, "Progress on AlGaN-based solarblind ultraviolet photodetectors and focal plane arrays", Light Sci. Appl., Vol. 10, No. 94, pp. 1-31, 2021.  https://doi.org/10.1038/s41377-020-00435-z
  3. O. Mikael, "High power device in wide bandgap semiconductors", Sci. China Inf. Sci., Vol. 52, No. 5, pp. 1087-1093, 2011.  https://doi.org/10.1007/s11432-011-4232-9
  4. N. Nasiri, D. Jin, and A. Tricoli, "Nanoarchitechtonics of Visible-Blind Ultraviolet Photodetector Materials: Critical Features and Nano-Microfabrication", Adv. Opt. Mater., Vol. 7, No. 2, p. 1800580, 2019. 
  5. J. Grant, R. Bates, W. Cunningham, A. Blue, J. Melone, F. McEwan, J. Vaitkus, E. Gaubas, and V. O'Shea, "GaN as a radiation hard particle detector", Prog. Part. Nucl. Phys., Vol. 576, No. 1, pp. 60-65, 2007.  https://doi.org/10.1016/j.nima.2007.01.121
  6. H. Y. Liu, W. C. Hsu, B. Y. Chou, and Y. H. Wang, "A Simple Passivation Technique for AlGaN/GaN Ultraviolet Schottky Barrier Photodetector", IEEE Photon. Technol. Lett., Vol. 26, No. 2, pp. 138-141, 2014.  https://doi.org/10.1109/LPT.2013.2290130
  7. H. Tian, B. Fowler, and A. E. Gamaml, "Anaylsis of Temporal Noise in CMOS Photodiode Active Pixel Sensor", IEEE J. Solid-State Circuits, Vol. 36, No. 1, pp. 92-101, 2001.  https://doi.org/10.1109/4.896233
  8. I. Brouk, A. Nemirovsky, and Y. Nemirovsky, "Analysis of Noise in CMOS Image Sensor", Proc. of 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, pp. 1-8, Tel-Aviv, Israel, 2008. 
  9. F. Xie, H. Lu, D. Chen, R. Zhang, and Y. Zheng, "GaN MSM photodetectors fabricated on bulk GaN with low dark-current and high UV/visible rejection ratio", Phys. Stat. Sol., Vol. 8, No. 7-8, pp. 2473-2475, 2011.  https://doi.org/10.1002/pssc.201000884
  10. B. Ren, M. Liao, M. Sumiya, J. Huang, L. Wang, Y. Koide, and L. Sang, "Vertical-Type Ni/GaN UV Photodetectors Fabricated on Free-Standing GaN Substrates", MDPI Appl. Sci., Vol. 9, No. 14, pp. 2895(1)-2895(8), 2019.  https://doi.org/10.3390/app9142895
  11. Q. Lyu, H. Jiang, X. Lu, and K. M. Lau, "High Responsivity and Low Dark Current Ultraviolet Photodetectors Using p-GaN/AlGaN/GaN Heterostructure", Proc. of Compound Semiconductor Week 2019, pp. 1-2, Nara, Japan, 2019. 
  12. C. J. Lee, Y. J. Kwon, C. H. Won, J. H. Lee, and S. H. Hahm, "Dual-wavelength sensitive AlGaN/GaN metal-insulator-semiconductor-insulator-metal ultraviolet sensor with balanced ultraviolet/visible rejection ratios", Appl. Phys. Lett., Vol. 103, No. 11, p. 111110, 2013. 
  13. F. Xie, H. Lu, D. Chen, X. Ji, F. Yan, R. Zhang, Y. Zheng, L. Li, and J. Zhou, "Ultra-Low Dark Current AlGaN-Based Solar-Blind Metal-Semiconductor-Metal Photodetectors for High-Temperature Applications", IEEE Sens. J., Vol. 12, No. 6, pp. 2086-2090, 2012.  https://doi.org/10.1109/JSEN.2012.2184533
  14. J. Lee, D. Liu, H. Kim, and W. Lu, "Post-annealing effects on device performance of AlGaN/GaN HFETs", Solid-State Electron., Vol. 48, No. 10-11, pp. 1855-1859, 2004.  https://doi.org/10.1016/j.sse.2004.05.026
  15. B. P. Luther, S. E. Mohney, T. N. Jackson, M. A. Khan, Q. Chen, and J. W. Yang, "Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN", Appl. Phys. Lett., Vol. 70, No. 1, pp. 57-59, 1997.  https://doi.org/10.1063/1.119305
  16. W. Lim, J. H. Jeong, J. H. Lee, S. B. Hur, J. K. Ryu, K. S. Kim, T. H. Kim, S. Y. Song, J. I. Yang, and S. J. Pearton, "Temperature dependence of current-voltage characteristics of Ni-AlGaN/GaN Schottky diodes", Appl. Phys. Lett., Vol. 97, No. 24, p. 242103, 2010. 
  17. J. H. Seol and S. H. Hahm, "Selective Ohmic Contact Formation on Schottky Type AlGaN/GaN UV Sensors Using Local Breakdown", IEEE Sens. J., Vol. 19, No. 8, pp. 2946-2949, 2019.  https://doi.org/10.1109/JSEN.2019.2892556
  18. C. Zhao, N. Alfaraj, R. C. Subedi, J. W. Liang, A. A. Alatawi, A. A. Alhamoud, M. Ebaid, M. S. Alas, T. K. Ng, and B. S. Ooi, "III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications", Prog. Quantum. Electron., Vol. 61, pp. 1-31, 2018.  https://doi.org/10.1016/j.pquantelec.2018.07.001
  19. C. Haller, J. F. Carlin, G. Jacopin, W. Liu, D. Martin, R. But t e, and N. Grandjean, "GaN surface as t he source of non-radiative defects in InGaN/GaN quantum wells", Appl. Phys. Lett, Vol. 113, No. 11, p. 111106, 2018. 
  20. A. Rebey, T. Boufaden, and B. E. Jani, "In situ optical monitoring of the decomposition of GaN thin films", J. Cryst. Growth, Vol. 203, No. 1-2, pp. 12-17, 1999.  https://doi.org/10.1016/S0022-0248(99)00081-0
  21. D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson, and M. E. Twigg, "GaN decomposition in H2 and N2 MOVPE temperatures and pressures", J. Cryst. Growth, Vol. 223, No. 4, pp. 466-483, 2001.  https://doi.org/10.1016/S0022-0248(01)00617-0
  22. D. C. Look, "Defect-Related Donors, Acceptors, and Traps in GaN", Phys. Stat. Sol., Vol. 228, No. 1, pp. 293-302, 2001.  https://doi.org/10.1002/1521-3951(200111)228:1<293::AID-PSSB293>3.0.CO;2-F
  23. Z. Zhang, A. R. Arehart, E. Cinlilic, J. Chen, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, B. McSkimming, J. S. Speck, and S. A. Ringel, "Impact of proton irradiation on deep level states in n-GaN", Appl. Phys. Lett., Vol. 103, No. 4, pp. 042102(1)-042102(6), 2013.  https://doi.org/10.1063/1.4816423
  24. M. A. Reshchikov, "On the Origin of the Yellow Luminescence Band in GaN", Phys. Stat. Sol., Vol. 260, No. 8, pp. 2200488(1)-2200488(16), 2023. 
  25. T. Hashizume, J. Kotani, A. Basile, and M. Kaneko, "Surface Control Process of AlGaN for Suppression of Gate Leakage Currents in AlGaN/GaN Heterostructure Field Effect Transistor", J. J. Appl. Phys., Vol. 45, No. 4. pp. L111-L113, 2006.  https://doi.org/10.1143/JJAP.45.L111
  26. T. Hashizume, and H. Hasegawa, "Effects of nitrogen deficiency on electronic properties of AlGaN surfaces subjected to thermal and plasma processes", Appl. Surf. Sci, Vol. 234, No. 1-4. pp. 387-394, 2004.  https://doi.org/10.1016/j.apsusc.2004.05.091
  27. K. Makiyama, T. Ohki, N. Okamoto, M. Kanamura, S. Masuda, Y. Nakasha, K. Joshin, K. Imanishi, N. Hara, S. Ozaki, N. Nakamura, and T. Kikkawa, "High-Power GaN-HEMT with low current collapse for millimeter-wave amplifier", Phys. Stat. Sol., Vol. 8, No. 7-8, pp.2442-2444, 2011.  https://doi.org/10.1002/pssc.201001034
  28. F. Gao, Di Chen, H. L. Tuller, C. V. Thompson, and T. Palacios, "On the redox origin of surface trapping in AlGaN/ GaN high electron mobility transistors", J. Appl. Phys., Vol. 115, No. 12. p.124506, 2014.