DOI QR코드

DOI QR Code

Development of Stretchable Electronics Using Geometric Strategies and Applications

  • Seungkyu Lee (Department of Material Science & Engineering, Korea of Advanced Institute of Science and Technology (KAIST)) ;
  • Kyusoon Pak (Department of Material Science & Engineering, Korea of Advanced Institute of Science and Technology (KAIST)) ;
  • Jun Chang Yang (Department of Material Science & Engineering, Korea of Advanced Institute of Science and Technology (KAIST)) ;
  • Steve Park (Department of Material Science & Engineering, Korea of Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2023.11.07
  • 심사 : 2023.11.28
  • 발행 : 2023.11.30

초록

Soft and stretchable electronics, equipped with diverse functional devices, have recently garnered attention owing to their versatility in applications such as stretchable displays, flexible batteries, and electronic skin (e-skin). A fundamental challenge in realizing stretchable electronics lies in conferring the necessary flexibility to crucial electrical components such as electrodes and devices. However, the prevalent electronic materials, exhibit limited stretchability, presenting a significant obstacle to the advancement of soft and stretchable electronics. To overcome this challenge, various strategies rooted in geometrical engineering have been explored to enhance the adaptability of rigid materials. This study delves into the realm of geometrical engineering by, examining techniques such as serpentine patterns, kirigami-inspired designs, and island structures, with a keen focus on recent progress and future prospects.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (Grant Number: NRF-2022R1A2C2006076) and RS-2023-00258591.

참고문헌

  1. N. Matsuhisa, X. Chen, Z. Bao, and T. Someya, "Materials and structural designs of stretchable conductors", Chem. Soc. Rev., Vol. 48, No. 11, pp. 2946-2966, 2019.  https://doi.org/10.1039/C8CS00814K
  2. W. Wu, "Stretchable electronics: functional materials, fabrication strategies and applications", Sci. Technol. Adv. Mater., Vol. 20, No. 1, pp. 187-224, 2019.  https://doi.org/10.1080/14686996.2018.1549460
  3. R.-H. Kim, D.-H. Kim, J. Xiao, S.-I. Park, B. Panilaitis, R. Ghaffari, M. Li, B. H. Kim, Z. Liu, D. L. Kaplan, F. G. Omenetto, Y. Huang , Z. Kang , and J. A. Rogers, "Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics", Nat. Mater., Vol. 9, No. 11, pp. 929-937, 2010.  https://doi.org/10.1038/nmat2879
  4. Y. Zhang, H. Fu, Y. Su, S. Xu, H. Cheng, J. A. Fan, K.-C. Hwang, J. A. Rogers, and Y. Huang, "Mechanics of ultra-stretchable self-similar serpentine interconnects", Acta Mater., Vol. 61, No. 20, pp. 7816-7827, 2013.  https://doi.org/10.1016/j.actamat.2013.09.020
  5. K.-I. Jang, S. Y. Han, S. Xu, K. E. Mathewson, Y. Zhang, J.-W. Jeong, G.-T. Kim, R. C. Webb, J. W. Lee, T. J. Dawidczyk, R. H. Kim, Y. M. Song , W.-H. Yeo, S. Kim, H. Cheng, S. I. Rhee, J. Chung, B. Kim, H. U. Chung, D. Lee, Y. Yang, M. Cho, J. G. Gaspar, R. Carbonari, M. Fabiani, G. Gratton, Y. Huang, and J. A. Rogers, "Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring", Nat. Commun., Vol. 5, No. 1, pp. 4779(1)-4779(10), 2014.  https://doi.org/10.1038/ncomms5779
  6. D. H. Kim, J. Xiao, J. Song, Y. Huang, and J. A. Rogers, "Stretchable, curvilinear electronics based on inorganic materials", Adv. Mater., Vol. 22, No. 19, pp. 2108-2124, 2010.  https://doi.org/10.1002/adma.200902927
  7. J. A. Fan, W.-H. Yeo, Y. Su, Y. Hattori, W. Lee, S.-Y. Jung, Y. Zhang , Z. Liu, H. Cheng , L. Falg out, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. Huang, and J. A. Rogers, "Fractal design concepts for stretchable electronics", Nat. Commun., Vol. 5, pp. 3266(1)-3266(8), 2014.  https://doi.org/10.1038/ncomms4266
  8. R. Xu, A. Zverev, A. Hung, C. Shen, L. Irie, G. Ding, M. Whitmeyer, L. Ren, B. Griffin, J. Melcher, L. Zheng, X. Zang, M. Sanghadasa, and L. Lin, "Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting", Microsyst. Nanoeng., Vol. 4, No. 1, pp. 36(1)-36(10), 2018.  https://doi.org/10.1038/s41378-018-0004-7
  9. N. Qaiser, A. N. Damdam, S. M. Khan, S. Bunaiyan, and M. M. Hussain, "Design Criteria for Horseshoe and Spiral-Based Interconnects for Highly Stretchable Electronic Devices", Adv. Funct. Mater., Vol. 31, No. 7, p. 2007445, 2020. 
  10. T. Kim, H. Lee, W. Jo, T. S, Kim, and S. Yoo, "Realizing Stretchable OLEDs: A Hybrid Platform Based on Rigid Island Arrays on a Stress-Relieving Bilayer Structure", Adv. Mater. Technol., Vol. 5, No. 11, p. 2000494, 2020. 
  11. B. Lee, H. Cho, S. Jeong, J. Yoon, D. Jang, D. K. Lee, D. Kim, S. Chung, and Y. Hong, "Stretchable hybrid electronics: combining rigid electronic devices with stretchable interconnects into high-performance on-skin electronics", J. Inf. Disp., Vol. 23, No. 3, pp. 163-184, 2022.  https://doi.org/10.1080/15980316.2022.2070291
  12. S. Y. Hong, J. Yoon, S. W. Jin, Y. Lim, S. J. Lee, G. Zi, and J. S. Ha, "High-density, stretchable, all-solid-state micro-supercapacitor arrays", ACS Nano, Vol. 8, No. 9, pp. 8844-8855, 2014.  https://doi.org/10.1021/nn503799j
  13. H. Song, G. Luo, Z. Ji, R. Bo, Z. Xue, D. Yan, F. Zhang, K. Bai, J. Liu, X. Cheng, W. Pang, Z. Shen, and Y. Zhang, "Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials", Sci. Adv., Vol. 8, No. 11, pp. eabm3785(1)-eabm3785(13), 2022. 
  14. X. Li, P. Zhu, S. Zhang, X. Wang, X. Luo, Z. Leng, H. Zhou, Z. Pan, and Y. Mao, "Self-Supporting, Conductor-Exposing, Stretchable, Ultrathin, and Recyclable Kirigami-Structured Liquid Metal Paper for Multifunctional E-Skin", ACS Nano, Vol. 16, No. 4, pp. 5909-5919, 2022.  https://doi.org/10.1021/acsnano.1c11096
  15. L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li, H. Ji, X. Chen, G. Niu, J. Yan, Y. Xue, and H. Cheng, "Moisture-resistant, stretchable NO(x) gas sensors based on laser-induced graphene for environmental monitoring and breath analysis", Microsyst. Nanoeng., Vol. 8, No. 1, pp. 78(1)-78(12), 2022.  https://doi.org/10.1038/s41378-021-00337-z
  16. B. Yang, Y. Zhao, M. U. Ali, J. Ji, H. Yan, C. Zhao, Y. Cai, C. Zhang, and H. Meng, "Asymmetrically Enhanced Coplanar-Electrode Electroluminescence for Information Encryption and Ultrahighly Stretchable Displays", Adv. Mater., Vol. 34, No. 31, p. 2201342, 2022. 
  17. A. Amiri, K. Bashandeh, R. Sellers, L. Vaught, M. Naraghi, and A. A. Polycarpou, "Fully integrated design of a stretchable kirigami-inspired micro-sized zinc-sulfur battery", J. Mater. Chem. A, Vol. 11, No. 20, pp. 10788-10797, 2023.  https://doi.org/10.1039/D2TA08544E
  18. J. C. Yang, S. Lee, B. S. Ma, J. Kim, M. Song, S. Y. Kim, D. W. Kim, T. S. Kim, and S. Park, "Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes", Sci. Adv., Vol. 8, No. 22, pp. eabn3863(1)-eabn3863(11), 2022. 
  19. Y. Zhang, S. Xu, H. Fu, J. Lee, J. Su, K. C. Hwang, J. A. Rogers, and Y. Huang, "Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage", Soft Matter, Vol. 9, No. 33, pp. 8062-8070, 2013.  https://doi.org/10.1039/c3sm51360b
  20. S. M. Curtis, J. L. Gugat, L. Bumke, D. Dengiz, L. Seigner, D. Schmadel, N. S. Lazarus, and E. Quandt, "Thin-Film Superelastic Alloys for Stretchable Electronics", Shape Mem. Superelasticity, Vol. 9, No. 1, pp. 35-49, 2023.  https://doi.org/10.1007/s40830-023-00422-4
  21. J. H. Song, Y. G. Kim, Y. Cho, S. Hong, J. Y. Choi, M. S. Kim, and S. H. Ahn, "Stretchable Strain and Strain Rate Sensor Using Kirigami-Cut PVDF Film", Adv. Mater. Technol., Vol. 8, No. 6, p. 2201112, 2023. 
  22. K. B. Kim, Y. J. Lee, A. Costa, Y. K. Lee, T. S. Jang, M. G. Lee, Y. C. Joo, K. H. Oh, J. Song, and I. S. Choi, "Extremely Versatile Deformability beyond Materiality: A New Material Platform through Simple Cutting for Rugged Batteries", Adv. Eng. Mater., Vol. 21, No. 7, p. 1900206(1)-1900206(8), 2019.  https://doi.org/10.1002/adem.201900206
  23. K. Li, Y. Shuai, X. Cheng, H. Luan, S. Liu, C. Yang, Z. Xue, Y. Huang, and Y. Zhang, "Island Effect in Stretchable Inorganic Electronics", Small, Vol. 18, No. 17, p. 2107879, 2022. 
  24. X. Song, T. Zhang, L. Wu, R. Hu, W. Qian, Z. Liu, J. Wang, Y. Shi, J. Xu, K. Chen, and L Yu, "Highly Stretchable High-Performance Silicon Nanowire Field Effect Transistors Integrated on Elastomer Substrates", Adv. Sci., Vol 9, No. 9, pp. 2105623(1)-2105623(9), 2022.  https://doi.org/10.1002/advs.202105623
  25. S. Biswas, A. Schoeberl, Y. Hao, J. Reiprich, T. Stauden, J. Pezoldt, and H. O. Jacobs, "Integrated multilayer stretchable printed circuit boards paving the way for deformable active matrix", Nat. Commun., Vol. 10, No. 1, pp. 4909(1)-4909(8), 2019.  https://doi.org/10.1038/s41467-018-07882-8
  26. X. Ma, X. Wu, S. Cao, Y. Zhao, Y. Lin, Y. Xu, X. Ning, and D. Kong, "Stretchable and Skin-Attachable Electronic Device for Remotely Controlled Wearable Cancer Therapy", Adv. Sci., Vol. 10, No. 10, pp. 2205343(1)-2205343(9), 2023. 
  27. Z. Li, A. Islam, M. D. Luigi, Y. Huang , and S. Ren, "Stretchable copper-nanocellulose paper heater", Appl. Mater. Today, Vol. 31, p. 101740, 2023. 
  28. R. Yeasmin, S.-I. Han, L. T. Duy, B. Ahn, and H. Seo, "A Skin-like Self-healing and stretchable substrate for wearable electronics", J. Chem. Eng., Vol. 455, p. 140543, 2023.