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ANTI-FLIPS OF THE BLOW-UPS OF THE PROJECTIVE

SPACES AT TORUS INVARIANT POINTS

Hiroshi Sato and Shigehito Tsuzuki

Abstract. We explicitly construct the smooth toric Fano variety which

is isomorphic to the blow-up of the projective space at torus invariant
points in codimension one by anti-flips.

1. Introduction

The blow-up of the projective plane P2 at 1, 2 or 3 torus invariant points
is isomorphic to the Hirzebruch surface F1 of degree 1, the del Pezzo surface
S7 of degree 7 or the del Pezzo surface S6 of degree 6, respectively. As is well
known, they are Fano varieties, that is, their anti-canonical divisors are ample.
For d ≥ 3, let Bd

n be the blow-up of Pd at n torus invariant points. Then, Bd
1

is a Fano variety, while Bd
n is not a Fano variety for n ≥ 2 (see e.g. [3]).

In this paper, we construct the smooth Fano variety B̃d
n which is birationally

equivalent to Bd
n by a finite succession of anti-flips. For this construction, we

investigate the primitive relations for toric anti-flips. The construction of B̃d
n

is a generalization for the theory of pseudo-symmetric and symmetric toric
varieties by Ewald [5] and Voskresenskij-Klyachko [12]. The following is the
main theorem of this paper.

Theorem 1.1 (Theorem 3.3). Let Bd
n be the blow-up of Pd at n torus invariant

points. Suppose that d ≥ 3 and n ≥ 2.

If 2n − 1 < d or d is even, then there exists a finite succession Bd
n 99K B̃d

n

of anti-flips such that B̃d
n is a smooth toric Fano variety. More precisely, if

2n − 1 < d, then B̃d
n has a (P1)n-bundle structure over Pd−n, while otherwise

every extremal ray of the Kleiman-Mori cone of B̃d
n is of small type.

If 2n− 1 ≥ d and d is odd, then there does not exist a smooth Fano variety
which is isomorphic to Bd

n in codimension one.
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This paper is organized as follows: Section 2 is devoted to the calculation
of anti-flips by using the notion of primitive relations. This will be useful for
the birational geometry of toric varieties. In Section 3, we prove Theorem 1.1.
In each case, we can explicitly describe the number of anti-flips to obtain the
smooth toric Fano variety (see Theorem 3.3).

Acknowledgments. The authors thank the referee very much for many useful
comments. They also thank Professor Osamu Fujino, who kindly answered their
questions about minimal model theory.

2. Preliminary

In this section, we quickly review the notion of primitive collections and
relations for toric varieties introduced by Batyrev [1] (see also [2, 11]). They
are convenient to describe the fan associated to a smooth complete toric variety.
By using them, we can explicitly calculate some important operations in the
birational geometry like blow-ups, blow-downs and anti-flips. For the basic
theory of the toric geometry, see [4, 7, 9]. Moreover, for the toric Mori theory,
see [6, 8, 10]. We will work over an algebraically closed field K = K.

Let X = XΣ be the smooth projective toric d-fold associated to a fan Σ in
N := Zd. Put

G(Σ) := {the primitive generators for 1-dimensional cones in Σ} ⊂ N.

There is a one-to-one correspondence between G(Σ) and the set of torus in-
variant prime divisors on X. In particular, for another smooth projective toric
d-fold X ′ = XΣ′ , if G(Σ) = G(Σ′), then X and X ′ are isomorphic in codimen-
sion one.

The following notion is very important for our theory.

Definition 2.1. A non-empty subset P ⊂ G(Σ) is a primitive collction of Σ
(or X) if

(1) P does not generate a cone in Σ, while
(2) P \ {u} generates a cone in Σ for any u ∈ G(Σ).

For a primitive collection P = {u1, . . . , ul}, there exists a unique cone σ(P ) ∈ Σ
which contains u1 + · · · + ul in its relative interior. Let {v1, . . . , vm} ⊂ G(Σ)
be the generators for σ(P ) (in particular, m is the dimension of σ(P )). Then,
we have a linear relation

u1 + · · ·+ ul = a1v1 + · · ·+ amvm,

where a1, . . . , am are positive integers. We call this relation the primitive rela-
tion for P = {u1, . . . , ul}.

It is well known that for any primitive collection of X = XΣ, we can asso-
ciate a numerical 1-cycle on X by using its primitive relation (see e.g. [1]). In
particular, the numerical 1-cycles associated to the primitive collections of X
generate the Kleiman-Mori cone NE(X), which is always polyhedral when X is
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a projective toric variety. So, we say that a primitive collection (or a primitive
relation) is extremal if the associated numerical 1-cycle generates an extremal
ray R ⊂ NE(X). Thus, we obtain the extremal contraction φR : X → X
associated to an extremal primitive relation u1 + · · ·+ ul = a1v1 + · · ·+ amvm.
For the type of φR, the following hold:

• If m = 0, then φR : X → X is a Mori fiber space. In this case, φR is
nothing but a Pl−1-bundle structure over X.

• If m = 1, then φR : X → X is a divisorial contraction. Moreover, if
a1 = 1, then φR is a blow-up of X along a (d − l)-dimensional torus
invariant subvariety.

• If m ≥ 2, then φR : X → X is a small contraction. Moreover, if
l − (a1 + · · · + am) > 0 (resp. < 0, = 0), then φR is a flipping (resp.
anti-flipping, flopping) contraction. For a flipping (resp. anti-flipping,
flopping) contraction φR : X → X, we can construct a flip (resp. anti-
flip, flop)

X

φR ��

// X+

φ+
R~~

X

by the toric Mori theory. An anti-flip is the inverse operation of a flip,
that is, if X 99K X+ is a flip, then its inverse rational map X+ 99K X
is an anti-flip.

We should remark that Σ can be recovered by all the primitive relations of
Σ. Namely, we can describe a fan by giving all the primitive relations of it.

For blow-ups, the primitive collections can be calculated as follows:

Proposition 2.2 ([11], Theorem 4.3). Let X = XΣ be a smooth projective
toric variety and X ′ → X be the blow-up with respect to an l-dimensional cone
⟨u1, . . . , ul⟩ in Σ, where {u1, . . . , ul} ⊂ G(Σ) (remark that l is the codimension
of the center of the blow-up). Put v := u1 + · · · + ul. Then, the primitive
collections of X ′ are

(1) {u1, . . . , ul} (whose primitive relation is u1 + · · ·+ ul = v),
(2) any primitive collection P in Σ such that {u1, . . . , ul} ̸⊂ P and
(3) (P \ {u1, . . . , ul}) ∪ {v} for any primitive collection P of Σ such that

P \ {u1, . . . , ul} is a minimal element in

{Q \ {u1, . . . , ul} |Q is a primitive collection of Σ, Q ∩ {u1, . . . , ul} ≠ ∅} .

Conversely, we can calculate the primitive collections of a blow-down of a
smooth projective toric variety.

Proposition 2.3 ([11], Corollary 4.9). Let X = XΣ be a smooth projective
toric variety and X → X the blow-down with respect to an extremal primitive
relation

u1 + · · ·+ ul = v
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of X. Then, the primitive collections of X are

(1) any primitive collection P of Σ such that P ̸= {u1, . . . , ul} and v ̸∈ P ,
and

(2) (P \ {v}) ∪ {u1, . . . , ul} for any primitive collection P of Σ such that
v ∈ P and (P \{v})∪S is not a primitive collection of Σ for any proper
subset S ⊂ {u1, . . . , ul}.

By combining Propositions 2.2 and 2.3, we obtain the following. This theo-
rem is essential for the calculations in Section 3.

Theorem 2.4. Let X = XΣ be a smooth projective toric variety and X 99K
X+ = XΣ+ the anti-flip with respect to an extremal primitive relation

u1 + · · ·+ ul = v1 + · · ·+ vm (l < m)

of Σ, where {u1, . . . , ul, v1, . . . , vm} ⊂ G(Σ). Then, X+ is also a smooth pro-
jective toric variety and the primitive collections of Σ+ are

(1) {v1, . . . , vm} whose primitive relation is

v1 + · · ·+ vm = u1 + · · ·+ ul,

(2) any primitive collection P of Σ such that {v1, . . . , vm} ̸⊂ P and P ̸=
{u1, . . . , ul}, and

(3) (P \ {v1, . . . , vm}) ∪ {u1, . . . , ul} for any primitive collection P of Σ
such that P \ {v1, . . . , vm} is a minimal element in

{P \ {v1, . . . , vm} |P is a primitive collection of Σ, P ∩ {v1, . . . , vm} ≠ ∅}
and (P \ {v1, . . . , vm}) ∪ S does not contain a primitive collection for
any proper subset S ⊂ {u1, . . . , ul}.

Proof. X+ is obtained by blowing-up X along the torus invariant subvariety
associated to the cone ⟨v1, . . . , vm⟩ and by blowing-down with respect to the
extremal primitive relation

u1 + · · ·+ ul = v,

where v := v1+ · · ·+vm. Therefore, we can apply Propositions 2.2 and 2.3. □

Remark 2.5. Obviously, Theorem 2.4 is valid for smooth flips (the case where
l > m) and smooth flops (the case where l = m) as well.

Low-dimensional examples for this calculation are given in Section 3 (see
Examples 3.6 and 3.7).

We end this section by giving a characterization of Fano varieties using the
notion of primitive relations for the reader’s convenience:

Proposition 2.6 (see e.g. [2]). Let X = XΣ be a smooth projective toric
variety. Then X is a Fano variety (resp. weak Fano variety) if and only if for
any primitive relation

u1 + · · ·+ ul = a1v1 + · · ·+ amvm
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of Σ, l− (a1 + · · ·+ am) > 0 (resp. ≥ 0) holds. We call l− (a1 + · · ·+ am) the
degree of the primitive collection (or relation).

3. Blow-ups and anti-flips

First, we give the description of the fans associated to the projective spaces
and their blow-ups at torus invariant points. We will use this notation through-
out this section.

For any natural number d, the d-dimensional projective space Pd is the sim-
plest complete toric d-fold whose fan Σd

0 is described as follows: Let {e1, . . . , ed}
be the standard basis for N := Zd, and put x1 := e1, . . . , xd := ed, xd+1 :=
−(e1 + · · ·+ ed). Then, Σ

d
0 has the unique primitive collection with the follow-

ing primitive relation

x1 + · · ·+ xd+1 = 0,

where G(Σd
0) = {x1, . . . , xd+1}. Namely, Pd can be expressed by this only one

simple equality.
Suppose that d ≥ 2, and let π : Bd

n → Pd be the blow-up of Pd at n torus
invariant points for 1 ≤ n ≤ d + 1 and Σd

n the fan associated to Bd
n. Here,

we should remark that Pd has exactly d + 1 torus invariant points. We may
assume n ≥ 2, since Bd

1 itself is a Fano manifold. By using Proposition 2.2 n
times, we obtain the following.

Proposition 3.1. The primitive relations of Σd
n are

xi + yi = 0 (1 ≤ i ≤ n), x1 + · · ·+ x̌i + · · ·+ xd+1 = yi (1 ≤ i ≤ n) and

yi + yj = x1 + · · ·+ x̌i + · · ·+ x̌j + · · ·+ xd+1 (1 ≤ i < j ≤ n),

where G(Σd
n) = {x1, . . . , xd+1, y1, . . . , yn}. In particular, Σd

n has exactly n(n+3)
2

primitive collections.

The main purpose of this paper is to construct the smooth toric Fano variety

B̃d
n associated to the fan Σ̃d

n such that G(Σ̃d
n) = G(Σd

n), that is, B̃
d
n and Bd

n are
isomorphic in codimension one. B2

2 and B2
3 themselves are del Pezzo surfaces,

so we assume d ≥ 3. Proposition 2.6 tells us that Bd
n is not a Fano variety for

d ≥ 3. We use the notation Cn,r = n!
r!(n−r)! for 1 ≤ r ≤ n.

Lemma 3.2. Let 1 ≤ r ≤ n − 1. Suppose that 2r + 1 < d and there exists
a smooth projective toric d-fold Bd

n,r associated to the fan Σd
n,r such that the

primitive relations of Σd
n,r are

(I) xi + yi = 0 (1 ≤ i ≤ n),
(II)

∑
x∈{x1,...,xd+1}\{xi1

,...,xir}
x = yi1 + · · · + yir (1 ≤ i1 < · · · < ir ≤ n)

and
(III) yj1 + · · · + yjr+1

=
∑

x∈{x1,...,xd+1}\{xj1
,...,xjr+1

} x (1 ≤ j1 < · · · <

jr+1 ≤ n), where G(Σd
n,r) = G(Σd

n) = {x1, . . . , xd+1, y1, . . . , yn}.
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Then, there exists a sequence of smooth anti-flips

Bd
n,r =: Bd

n,r(0) 99K Bd
n,r(1) 99K · · · 99K Bd

n,r(Cn,r+1) =: Bd
n,r+1

such that the primitive relations of the fan Σd
n,r+1 associated to Bd

n,r+1 are

xi + yi = 0 (1 ≤ i ≤ n),∑
x∈{x1,...,xd+1}\{xj1

,...,xjr+1
}

x = yj1 + · · ·+ yjr+1
(1 ≤ j1 < · · · < jr+1 ≤ n) and

yk1
+ · · ·+ ykr+2

=
∑

x∈{x1,...,xd+1}\{xk1
,...,xkr+2

}

x (1 ≤ k1 < · · · < kr+2 ≤ n),

where G(Σd
n,r+1) = G(Σn) = {x1, . . . , xd+1, y1, . . . , yn}.

Proof. First, we remark that 2r+1 < d means that the degrees of the primitive
relations in (III) are negative. Moreover, they are extremal by the symmetry
of the fan Σd

n,r, and the associated extremal contractions are anti-flipping con-

tractions. In particular, Bd
n,r is not a Fano variety.

Take a primitive relation

(⋆) ys1 + · · ·+ ysr+1 =
∑

x∈{x1,...,xd+1}\{xs1
,...,xsr+1

}

x

in (III), and let

Bd
n,r(0) := Bd

n,r 99K Bd
n,r(1)

be the associated anti-flip. Put Σd
n,r(1) be the fan associated to Bd

n,r(1). By

(2) in Theorem 2.4, the primitive relations of Σd
n,r in (I) are also primitive

relations of Σd
n,r(1). Also, (2) in Theorem 2.4 says that the primitive relations

in (III) other than the above primitive relation (⋆) are also primitive relations of
Σd

n,r(1), while {x1, . . . , xd+1} \ {xi1 , . . . , xir} (which is a primitive collection of

Σd
n,r in (II)) is a primitive collection of Σd

n,r(1) if and only if it does not contain
{x1, . . . , xd+1} \ {xs1 , . . . , xsr+1

}, that is, {xi1 , . . . , xir} ̸⊂ {xs1 , . . . , xsr+1
}. On

the other hand, ∑
x∈{x1,...,xd+1}\{xs1

,...,xsr+1
}

x = ys1 + · · ·+ ysr+1

is of course a new primitive relation of Σd
n,r(1). Moreover, (3) in Theorem

2.4 tells us that we have another new primitive collection {yi, ys1 , . . . , ysr+1
}

of Σd
n,r(1) if yi ̸∈ {ys1 , . . . , ysr+1

} and {yi, ys1 , . . . , ysr+1
} contains no primitive

collection of Σd
n,r other than {ys1 , . . . , ysr+1

} since {xi, yi} is a primitive col-

lection of Σd
n,r. We should remark that a primitive collection in (II) has the

non-empty intersection with {x1, . . . , xd+1} \ {xs1 , . . . , xsr+1}, however it does
not fulfill the condition in (3) in Theorem 2.4. Thus, we obtain the primitive
relations

xi + yi = 0 (1 ≤ i ≤ n),
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x∈{x1,...,xd+1}\{xi1 ,...,xir}

x = yi1 + · · ·+ yir (1 ≤ i1 < · · · < ir ≤ n),

yj1 + · · ·+yjr+1
=

∑
x∈{x1,...,xd+1}\{xj1

,...,xjr+1
}

x ((j1, . . . , jr+1) ̸= (s1, . . . , sr+1))

and
∑

x∈{x1,...,xd+1}\{xs1 ,...,xsr+1
}

x = ys1 + · · ·+ysr+1

of Σd
n,r(1). We remark that in this first case, any primitive relation of Σd

n,r in
(II) does not vanish, while the number of new primitive relations is only one.
Continuously, by doing the anti-flip with respect to a primitive relation in (III)
one by one, we obtain a sequence

Bd
n,r(0) 99K Bd

n,r(1) 99K · · · 99K Bd
n,r(Cn,r+1)

of anti-flips. In each step, we can calculate the primitive relations of the anti-
flip with the same rules as the first case Bd

n,r(0) 99K Bd
n,r(1). Eventually, all

the primitive relations in (II) vanish, and {k1, . . . , kr+2} becomes a primitive
collection for any 1 ≤ k1 < · · · < kr+2 ≤ n. This shows that Bd

n,r+1 :=

Bd
n,r(Cn,r+1) has the desired primitive relations. □

By Proposition 3.1, we can put Σd
n,1 := Σd

n. So, we can construct Bd
n,1, B

d
n,2,

Bd
n,3, . . . inductively by Lemma 3.2 unless 2r + 1 ≥ d or r = n. If 2r + 1 = d,

then Bd
n,r has a flopping contraction, and we cannot obtain a smooth Famo

variety. If 2r + 1 > d, then B̃d
n := Bd

n,r is the desired smooth Fano variety.
Thus, we obtain the following main theorem in this paper.

Theorem 3.3. The following hold:

(1) If 2n − 1 < d, then B̃d
n := Bd

n,n is a smooth toric Fano variety whose
primitive relations are

xi + yi = 0 (1 ≤ i ≤ n) and xn+1 + · · ·+ xd+1 = y1 + · · ·+ yn.

B̃d
n has a (P1)n-bundle structure over Pd−n. Moreover, Bd

n 99K B̃d
n is

the composition of 2n − n− 1 anti-flips.
(2) If 2n − 1 ≥ d and d is odd, then there does not exist a smooth Fano

variety which is isomorphic to Bd
n in codimension one.

(3) If 2n−1 ≥ d and d is even, then put c := d
2 . In this case, B̃d

n := Bd
n,c is

the desired smooth toric Fano variety. B̃d
n has no bundle structure, and

every extremal ray of the Kleiman-Mori cone of B̃d
n is of small type.

Moreover, Bd
n 99K B̃d

n is the composition of
∑c

r=2 Cn,r anti-flips.

Proof. Bd
n,r 99K Bd

n,r+1 is the composition of Cn,r+1 anti-flips. Therefore,

Bd
n 99K B̃d

n is the composition of
∑n

r=2 Cn,r anti-flips (resp.
∑c

r=2 Cn,r) for the
case (1) (resp. the case (3)).

The case (2) means 2r + 1 = d for some 1 ≤ r < n. So, we have a flopping
contraction in the middle of the operation. □
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Remark 3.4. In the cases (1) and (3) in Theorem 3.3, the rational map Bd
n 99K

B̃d
n is a process of the so-called −KBd

n
-minimal model program which consists

of only −KBd
n
-flips (that is, anti-flips), and B̃d

n is the unique −KBd
n
-minimal

model.
The case (2) is similar. However, in this case, any −KBd

n
-minimal model is

not a Fano manifold (in particular, not unique).

Remark 3.5. The conditions 2n − 1 ≥ d in (3) in Theorem 3.3 and n ≤ d + 1
become c + 1 ≤ n ≤ 2c + 1. Thus, we obtain exactly c + 1 smooth toric Fano

varieties B̃d
c+1, B̃

d
c+2, . . . , B̃

d
2c+1 in this case.

Example 3.6. We explicitly describe the 4-dimensional operations B4
2 99K B̃4

2

and B4
3 99K B̃4

3 .

(1) The primitive relations of Σ4
2 are

(i) x1 + y1 = 0, (ii) x2 + y2 = 0, (iii) x2 + x3 + x4 + x5 = y1,

(iv) x1 + x3 + x4 + x5 = y2 and (v) y1 + y2 = x3 + x4 + x5,

where G(Σ4
2) = {x1, x2, x3, x4, x5, y1, y2}. We do the anti-flip with re-

spect to (v). Theorem 2.4 tells us that the primitive relations (iii) and
(iv) are eliminated, since {x3, x4, x5} ⊂ {x2, x3, x4, x5} and {x3, x4, x5}
⊂ {x1, x3, x4, x5}. So the primitive relations of the desired toric mani-

fold B4
2,1(1) = B4

2,2 = B̃4
2 are

(i) x1 + y1 = 0, (ii) x2 + y2 = 0 and (v)+ x3 + x4 + x5 = y1 + y2.

By Proposition 2.6, B̃4
2 is a Fano variety. This case corresponds to (1)

in Theorem 3.3.
(2) The primitive relations of Σ4

3 are

(i) x1 + y1 = 0, (ii) x2 + y2 = 0, (iii) x3 + y3 = 0,

(iv) x2 + x3 + x4 + x5 = y1, (v) x1 + x3 + x4 + x5 = y2,

(vi) x1 + x2 + x4 + x5 = y3, (vii) y1 + y2 = x3 + x4 + x5,

(viii) y1 + y3 = x2 + x4 + x5 and (ix) y2 + y3 = x1 + x4 + x5,

where G(Σ4
2) = {x1, x2, x3, x4, x5, y1, y2, y3}. We do the 3-times anti-

flips

B4
3 = B4

3,1(0) 99K B4
3,1(1) 99K B4

3,1(2) 99K B4
3,1(3)

with respect to (vii), (viii) and (ix). The primitive relations of B4
3,1(1)

are (i), (ii), (iii), (vi), (viii), (ix) and

(vii)+ x3 + x4 + x5 = y1 + y2,

since {x3, x4, x5} ⊂ {x2, x3, x4, x5} and {x3, x4, x5} ⊂ {x1, x3, x4, x5}.
The primitive relations of B4

3,1(2) are (i), (ii), (iii), (vii)+, (ix) and

(viii)+ x2 + x4 + x5 = y1 + y3,
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since {x2, x4, x5} ⊂ {x1, x2, x4, x5}. Finally, the primitive relations of
B4

3,1(3) are (i), (ii), (iii), (vii)+, (viii)+,

(ix)+ x1 + x4 + x5 = y2 + y3 and (x) y1 + y2 + y3 = x4 + x5.

We should remark that {y1, y2, y3} is a new primitive collection (see (3)

in Theorem 2.4). By Proposition 2.6, B4
3,1(3) = B4

3,2 = B̃4
3 is a Fano

variety, and this case corresponds to (3) in Theorem 3.3.

B̃4
2 is the smooth toric Fano 4-fold of type D9, while B̃4

3 is the smooth toric
Fano 4-fold of type M1 (see Batyrev’s list [2]).

Example 3.7. We consider the 3-dimensional case B3
2 , that is, the case (2) in

Theorem 3.3. The primitive relations of Σ3
2 are

x1+y1 = 0, x2+y2 = 0, x2+x3+x4 = y1, x1+x3+x4 = y2 and y1+y2 = x3+x4,

where G(Σ3
2) = {x1, x2, x3, x4, y1, y2}. Let B3

2 99K B+ be the flop with respect
to y1 + y2 = x3 + x4. Then, the primitive relations of B+ are

x1 + y1 = 0, x2 + y2 = 0 and x3 + x4 = y1 + y2

by Theorem 2.4 (see Remark 2.5, too). Both B3
2 and B+ are not Fano manifolds

but weak Fano manifolds by Proposition 2.6. Namely, they are −KB3
2
-minimal

models for B3
2 . However, B3

2 and B+ are not isomorphic (see Remark 3.4).

Remark 3.8. For an even number d, B̃d
d is the pseudo-symmetric toric Fano

variety Ṽ d in [5], while B̃d
d+1 is the symmetric toric Fano variety V d in [12].
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