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SECOND MAIN THEOREM FOR MEROMORPHIC

MAPPINGS ON p-PARABOLIC MANIFOLDS

INTERSECTING HYPERSURFACES IN

SUBGENERAL POSITION

Yuehuan Zhu

Abstract. In this paper, we give an improvement for the second main

theorems of algebraically non-degenerate meromorphic maps from gener-

alized p-parabolic manifolds into projective varieties intersecting hyper-
surfaces in subgeneral position with some index, which extends the results

of Han [6] and Chen-Thin [3].

1. Introduction

In 1933, Cartan [2] established a second main theorem for linearly nonde-
generate holomorphic curves into complex projective spaces intersecting hy-
perplanes in general position. Later, Ahlfors [1], using an innovative geome-
try method, extended Cartan’s second main theorem to linearly nondegenerate
meromorphic maps on Cm. Stoll and Wong [17,18] generalized the above results
to algebraically non-degenerate meromorphic maps defined on parabolic mani-
folds. In 2004, Ru [13], using the filtration of the vector space of homogeneous
polynomials, established a defect relation for linearly nondegenerate meromor-
phic mappings from parabolic manifolds into the projective space intersecting
hypersurfaces. Subsequently, Ru [11] obtained a second main theorem of al-
gebraically nondegenerate holomorphic curves into projective varieties, solving
the Shiffman’s conjecture [15]. Han [6] generalized Ru’s results to meromorphic
maps from p-parabolic manifolds into smooth projective varieties intersecting
hypersurfaces in general position. The result of Han [6] was generalized by
Chen-Thin [3] to the case of intersecting hypersurfaces in subgeneral position.

Recently, Ji-Yan-Yu [7] introduced the concept of the index of subgeneral
position, and gave interesting improvements of some previously known second
main theorems. Motivated by this new notion, we will prove a second main
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theorem for meromorphic maps from p-parabolic manifolds into projective va-
rieties intersecting hypersurfaces in subgeneral position with index, which are
improvements and extensions of the results in Han [6] and Chen-Thin [3].

To state our result, we give some basic definitions and notations of p-
parabolic manifolds. For more details, we refer the reader to [18,19].

Definition. For 1 ≤ p ≤ m, a Kahler manifold (M,ω) of dimension m is
said to be a generalized p-parabolic manifold if there exists a plurisubharmonic
function ϕ such that

• {ϕ = −∞} is a closed subset of M with strictly lower dimension,
• ϕ is smooth on the open dense set M\{ϕ = −∞} satisfying

(ddcϕ)
p−1 ∧ ωm−p ̸≡ 0 and (ddcϕ)

p ∧ ωm−p ≡ 0.

Note that m-parabolic manifolds are just ordinary parabolic manifolds. Write
τ := eϕ and σ := dcϕ ∧ (ddcϕ)

p−1 ∧ ωm−p, where τ ≥ 0 is called a p-parabolic
exhaustion on M . For any positive real number r > 0, define

M [r] :=
{
x ∈M : τ(x) ≤ r2

}
, M(r) :=

{
x ∈M : τ(x) < r2

}
.

Then the pseudo-spheres associated with τ are defined as

M⟨r⟩ :=M [r]\M(r) =
{
x ∈M : τ(x) = r2

}
.

By [6], we have, for all r > 0, ∫
M⟨r⟩

σ = ς,

where ς is a constant depending only on the structure of M .
We next introduce the notion of associated maps. Let f : M → Pn(C) be

a meromorphic map defined on a complex manifold of dimension m, and let
fz : Uz → Cn+1 be a reduced representation of f on some a chart (z, Uz). If
a global meromorphic (m − 1, 0)-form B is given on M , we define the first
B-derivative f ′B of fz on Uz, by

dfz ∧B = f ′Bdz1 ∧ dz2 ∧ · · · ∧ dzm.

This operation can be iterated such that the k-th B-derivative f
(k)
B is defined

as

df
(k−1)
B ∧B = f

(k)
B dz1 ∧ dz2 ∧ · · · ∧ dzm

for k = 1, . . . , n. Then the k-th associated map fk : M → P
(∧k+1 Cn+1

)
is defined by fk |Uz= P (fk) on Uz, where P is the projection. We note that
the associated maps are independent of the choice of local charts, and thus are
globally well-defined.

With the notions as above, we give some general conditions on p-parabolic
manifolds.
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(1) (M, τ, ω) denotes a p-parabolic manifold which possesses a globally
defined meromorphic form B of degree (m − 1, 0), such that, for any
linearly non-degenerate meromorphic map f : M → Pn(C), the k-th
associated map fk is well defined for k = 0, 1, . . . , n, where we put
f0 := f and where fn is a constant.

(2) There exists a Hermitian holomorphic line bundle (L, ℏ) which admits
a holomorphic section µ such that, for some increasing function Y (τ),
we have

(−1)(m−1)(m−2)/2m!

(√
−1

2π

)m−1

|µ|2ℏB ∧ B̄ ≤ Y (τ) (ddcτ)
p−1 ∧ ωm−p.

A p-parabolic manifold (M, τ, ω) with the above assumptions is called an ad-
missible p-parabolic manifold.

For 1 ≤ p ≤ m, Ap is the p-th symmetric polynomial of the matrix (τab̄)
with respect to the Kahler metric ω. Actually, A1 is the trace of τab̄, while Am
is the determinant det (τab̄) (> 0). We denote

m0(L; r, s) =
1

2

∫
M⟨r⟩

log
1

|µ|2ℏ
σ − 1

2

∫
M⟨s⟩

log
1

|µ|2ℏ
σ.

Following [7,20], we give a definition for hypersurfaces being in N -subgeneral
position with index κ.

Definition. Let X ⊆ Pn(C) be an algebraic subvariety, and let {D1, . . . , Dq}
be a family of hypersurfaces in Pn(C). Let N and κ be two positive integers
satisfying N ≥ dimX ≥ κ.

(1) The hypersurfaces {D1, . . . , Dq} are called in general position in X if
for any subset I ⊆ {1, . . . , q} with ♯I ≤ dimX + 1,

codim

(⋂
i∈I

Di

⋂
X

)
≥ ♯I.

(2) The hypersurfaces {D1, . . . , Dq} are called in N -subgeneral position in
X if for any subset I ⊆ {1, . . . , q} with ♯I ≤ N + 1,

dim

(⋂
i∈I

Di

⋂
X

)
≤ N − ♯I.

(3) The hypersurfaces {D1, . . . , Dq} are called in N -subgeneral position
with index κ in X if {D1, . . . , Dq} are in N -subgeneral position and for
any subset I ⊆ {1, . . . , q} with ♯I ≤ κ,

codim

(⋂
i∈I

Di

⋂
X

)
≥ ♯I

(Here we set dim ∅ = −1).

Our main result is the following.
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Theorem 1.1. Let f : M → X ⊆ Pn(C) be an algebraically nondegenerate
meromorphic map defined on an admissible p-parabolic manifold M , where X
is a smooth variety of dimension ℓ ≥ 1. Let {D1, . . . , Dq} be a collection of
hypersurfaces in N -subgeneral position with index κ in X, and degQj = dj (j =
1, . . . , q). Then, for any ε > 0 and r > s > 0, we have1

∥
(
q − N − ℓ+ κ

κ

(
ℓ+ 1

)
− ε

)
Tf (r, s)

≤
q∑
j=1

d−1
j Nm

f (r, s;Dj) + c
(
m0(L; r, s) + Ricp(r, s) + ς log+ Y

(
r2
)
+ ς log+ r

)
,

where c ≫ 1 is a constant, m ≤ degXdℓeℓ
(
1 + u

ℓ

)ℓ
is a positive integer with

u controlled by (16), and Ricp(r, s), NRamf (r, s) are the counting functions of

divAp and the ramification divisor θ̃, respectively. Whenever s is fixed, take m
to be the largest integer less than

(degX)ℓ+1

[
edℓ+1(N − ℓ+ κ)(2ℓ+ 5)l

κε

]ℓ
,

where l = q!(ℓ−κ+1)
κ!(n−ℓ+1)!(q−N−1)! + q.

Letting m → ∞, we get the following second main theorem without trunca-
tion.

Corollary 1.2. Under the assumptions of Theorem 1.1, we have, for any ε > 0
and r > s > 0,

∥
q∑
j=1

d−1
j mf (r,Dj) ≤

(
N − ℓ+ κ

κ

(
ℓ+ 1

)
+ ε

)
Tf (r, s)

+ c
(
m0(L; r, s) + Ricp(r, s) + ς log+ Y

(
r2
)
+ ς log+ r

)
,

where c≫ 1 is a constant.

In this paper, we use the Hilbert weights method to prove a second main
theorem with truncated counting functions, which extends the main result in
[14] to the case of meromorphic maps from generalized p-parabolic manifolds
into projective varieties. We note that the main theorem in [3] is just a special
case of our main result when κ = 1. Next, we introduce a filtration of the
vector space corresponding to the coordinate ring of the variety. This filtration
is a generalization of Corvaja-Zannier’s filtration [4], given by Dethloff-Tan [5].
By utilizing the algebraic properties of the filtration and properties of Hilbert
polynomials, we provide an alternative proof of Corollary 1.2.

1Here, by the notation ∥, we mean that the inequality holds for all r ∈ (s,+∞) outside a

possible set of finite Lebesgue measure.
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2. Basic notations and auxiliary results

In this section, we briefly recall some notations and facts in Nevanlinna
theory on generalized p-parabolic manifolds.

2.1. Nevanlinna theory

Green-Jensen formula (on p-parabolic manifolds) [19], which is the funda-
mental formula in the theory of value distribution, is defined as follows, for
r > s > 0,

(1)

∫ r

s

dt

t2p−1

∫
M [t]

ddcφ ∧ (ddcτ)
p−1 ∧ ωm−p =

1

2

∫
M⟨r⟩

φσ − 1

2

∫
M⟨s⟩

φσ,

where φ is a plurisubharmonic function, and ddcφ denotes differentiation in
the sense of currents.

Let D ⊆ Pn(C) be a hypersurface, and let Q ∈ C [x0, . . . , xn] be the ho-
mogeneous polynomial of degree d defining D. Let f : M → Pn(C) be a
meromorphic map such that f(M) ̸⊆ D. We choose a reduced representation
fz = (f0, . . . , fn) : Uz → Cn+1 on a local chart Uz ⊆M . Then the Weil function

of f with respect to D (or Q) is locally denoted as, for x /∈ (Q(fz))
−1

(0),

λD(fz) := λD(f)|Uz
= log

∥fz∥d∥Q∥
|Q(fz)|

,

where ∥Q∥ is the maximum norm of the coefficients appearing in Q. Note
that λD(f) is independent of the reduced representations and hence is global
well-defined. Correspondingly, the proximity function mf (r,D) is defined as

mf (r,D) =

∫
M⟨r⟩

λD(f)σ.

Without loss of generality, we may assume ∥Q∥ = 1 in the definition of the
Weil function and the proximity function.

Put θDf |Uz
:= div(Q(fz))|Uz

on the local chart (z, Uz). Given two reduced
representations fα, fβ on the overlapping charts Uα, Uβ correspondingly, we
have fα = hαβfβ on Uα ∩ Uβ , for a non-vanishing holomorphic function hαβ ,
and thus θDf is a global well-defined divisor on M . Then the counting function
of f with respect to D is defined by

Nf (r, s;D) =

∫ r

s

dt

t2p−1

∫
M [t]

θDf ∧ (ddcτ)
p−1 ∧ ωm−p

for 0 < s < r. Writing θDf as locally finite sums θDf =
∑
λ∈A kλvλ of irreducible

analytic hypersurfaces, the m-th truncated divisor is locally defined as θm,Df :=

min {m, kλ} vλ for some positive integer m. Then the counting function with
truncated level m is defined by

Nm
f (r, s;D) =

∫ r

s

dt

t2p−1

∫
M [t]

θm,Df ∧ (ddcτ)
p−1 ∧ ωm−p.
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Accordingly, for any r > s > 0, the characteristic function of f is defined as

Tf (r, s) :=

∫ r

s

dt

t2p−1

∫
M [t]

f∗ΩFS ∧ (ddcτ)
p−1 ∧ ωm−p,

where ΩFS is Fubini-Study form on Pn(C).
Now, the Green-Jensen formula (1) implies:

Theorem 2.1 (First Main Theorem [6]). Let f :M → Pn(C) be a nonconstant
meromorphic map defined on a p-parabolic manifold M , and let D ⊂ Pn(C) be
a hypersurface of degree d such that f(M) ̸⊆ D. Then for any r > s > 0,

dTf (r, s) = Nf (r, s;D) +mf (r,D)−mf (s,D).

2.2. Some lemmas

Let X ⊆ Pn be a projective variety of dimension ℓ. Set Vu = C [x0, . . . , xn]u
and V̂u =

C[x0,...,xn]u
I(X)u

, where I(X) is the ideal of C [x0, . . . , xn] defining X and

I(X)u = I(X)∩C [x0, . . . , xn]u. The Hilbert polynomial HX(u) of X is defined
by

HX(u) := dim (C [x0, . . . , xn]u /IX(u)) .

Then for u big enough, we have

HX(u) = dimC
C [x0, . . . , xn]u

I(X)u
= dimC V̂u = deg V · u

ℓ

ℓ!
+O

(
uℓ−1

)
,

by the theory of Hilbert polynomials (see [16]). The Hilbert Weight SX(u, c)
of X with respect to some tuple c = (c0, . . . , cn) ∈ Rn+1 is defined by

SX(u, c) = max

HX(u)∑
j=1

aj · c

 ,

where the maximum is taken over all sets of monomials xa1 , . . . ,xaHX (u) whose
residue classes modulo I(X) form a basis of C [x0, . . . , xn]u / (I(X))u, where

aj = (aj0, . . . , ajn) ∈ Zn+1
≥0 is an (n + 1)-dimensional multi-index, and xaj =

x
aj0
0 . . . x

ajn
n .

Lemma 2.2 (see [11,12]). Let X ⊆ Pn be an algebraic subvariety of dimension
ℓ and degree △. Let u > △ be an integer, c ∈ Rn+1

≥0 , and let {i0, . . . , iℓ} be a

subset of {0, . . . , n} satisfying {x = [x0 : · · · : xn] ∈ Pn : xi0 = · · · = xiℓ = 0} ∩
X = ∅. Then

1

uHX(u)
SX(u, c) ≥ 1

(ℓ+ 1)
(ci0 + · · ·+ ciℓ)−

(2ℓ+ 1)△
u

(
max
0≤i≤n

ci

)
.

Lemma 2.3 (see [17]). Let f :M → Pn(C) be a linearly nondegenerate mero-
morphic map defined on a generalized p-parabolic manifold M , and let {Hj}qj=1
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be a collection of hyperplanes of Pn(C) in general position. We have

q∑
j=1

(
θ
Hj

f − θ
n,Hj

f

)
≤ θ̃.

Lemma 2.4 (see [6]). Let f : M → Pn(C) be a linearly nondegenerate mero-
morphic map defined on an admissible p-parabolic manifold M . Let {Hj}qj=1

be arbitrary hyperplanes in Pn(C). Then, for r > s > 0, we have

∥
∫
M⟨r⟩

max
K

∑
j∈K

λHj (f)σ

≤ (n+ 1)Tf (r, s)−NRam f (r, s)

+
1

2
n(n+ 1)m0(L; r, s) +

1

2
n(n+ 1)Ricp(r, s) +

1

2
ςn(n+ 1) log+ Tf (r, s)

+
1

2
ςn(n+ 1)

(
log+m0(L; r, s) + log+ Y

(
r2
)
+ log+ Ricp(r, s) + log+ r

)
,

where maxK ranges over all subsets K of {1, . . . , q} such that the hyperplanes
{Hj}j∈K are linearly independent.

3. Second main theorems

3.1. Proof of Theorem 1.1

Proof. Firstly, we prove the main theorem for the case where the hypersurfaces
have the same degree d. Let Qi ∈ C [x0, . . . , xn] be the homogeneous polynomial
defining Di for 1 ≤ i ≤ q. We choose a reduced representation f of f on an
arbitrary local chart U ⊆ M . For any z ∈ U (excluding the zeros of all Qj(f)
in U), there exists a permutation Ii = (i1, . . . , iq) of {1, . . . , q} such that

|Qi1 ◦ f(z)| ≤ |Qi2 ◦ f(z)| ≤ · · · ≤
∣∣Qiq ◦ f(z)∣∣ .(2)

We consider the following positive function [9]

h(z) = max
1≤t≤N+1

{
|Qit(z)|
∥z∥d

}
,

where z = [z0 : · · · : zn] ∈ Pn(C) and ∥z∥ =
(∑n

i=0 |zi|
2
) 1

2

. We see that h

is a positive continuous function on X. By the compactness of X, there exist
two positive constants c1 and c2, independence of the choice of Ii, such that
c1 = minz∈X h(z) and c2 = maxz∈X h(z). Then, we have

c1∥f∥d ≤ max
1≤t≤N+1

|Qit(f)| ≤ c2∥f∥d.(3)

Therefore (2) and (3) imply that

(4)

q∏
j=1

∥f(z)∥d

|Qj(f)(z)|
≤ 1

cq−N1

N∏
k=1

∥f(z)∥d

|Qik(f)(z)|
.
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Since the hypersurfaces {D1, . . . , Dq} are located in N -subgeneral position with
index κ in X, we get

codim

(
κ⋂
t=1

Dit

⋂
X

)
≥ κ.

With respect to the hypersurfaces {Di1 , . . . , DiN }, we can construct (ℓ − κ)-
homogeneous polynomials of the following forms:

Pj =

N−ℓ+j∑
t=κ+1

bjtQit , bjt ∈ C, j = κ+ 1, . . . , ℓ,(5)

such that {Di1 , . . . , Diκ , D̃iκ+1
, . . . , D̃iℓ} are located in general position on X,

where {D̃iκ+1 , . . . , D̃iℓ} are defined by the above Pj ’s, respectively. This method
of construction is due to Quang [8].

Now, we construct Pκ+1 as follows. Let Γ be the set of irreducible compo-
nents of (

⋂κ
t=1Dit

⋂
X) with codimension κ. For any ∆ ∈ Γ, let

X∆ =

{
b = (bκ+1, . . . , bN−ℓ+κ+1) ∈ CN−ℓ+1 : ∆ ⊆ D̃, where

D̃ is the hypersurface defined by Q̃ =

N−ℓ+κ+1∑
t=κ+1

btQit

}
.

Observe that D̃ = Pn(C) in the case where Q̃ is the zero polynomial. By
definition, X∆ is a subspace of CN−ℓ+1. Since

codim

(
N−ℓ+κ+1⋂

t=1

Dit

⋂
X

)
≥ κ+ 1,

there exists some t ∈ {κ+ 1, . . . , N − ℓ+ κ+ 1} such that ∆ ̸⊆ D̃it . This
implies that X∆ is a proper subspace of CN−ℓ+1. In view of the fact that Γ is
at most countable, we have

CN−ℓ+1\
⋃
∆∈Γ

X∆ ̸= ∅.

We denote by D̃iκ+1
the hypersurface defined by P̃κ+1 =

∑N−ℓ+κ+1
t=κ+1 btQit ,

where b = (bκ+1, . . . , bN−ℓ+κ+1) ∈ CN−ℓ+1\ ∪∆∈Γ V∆. This clearly implies
that

codim

(
κ⋂
t=1

Dit

⋂
X
⋂
D̃iκ+1

)
≥ κ+ 1.
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Next, let Γ′ be the set of irreducible components of
(⋂κ

t=1Dit

⋂
X
⋂
D̃iκ+1

)
with codimension κ+ 1. For any ∆′ ∈ Γ′, put

X∆′ =

{
b = (bκ+1, . . . , bN−ℓ+κ+2) ∈ CN−ℓ+2 : ∆′ ⊆ D̃, where

D̃ is the hypersurface defined by Q̃ =

N−ℓ+κ+2∑
t=κ+1

btQit

}
.

Similarly, ∆′ is a subspace of CN−ℓ+2. Since

codim

(
N−ℓ+κ+2⋂

t=1

Dit

⋂
X

)
≥ κ+ 2,

there exists some t ∈ {κ+ 1, . . . , N − ℓ+ κ+ 2} such that X∆′ ̸⊆ D̃it . This
implies that X∆ is a proper subspace of CN−ℓ+2. Since Γ′ is at most countable,

CN−ℓ+2\
⋃

∆′∈Γ′

X∆′ ̸= ∅.

Denote by D̃iκ+2
the hypersurface defined by P̃κ+2 =

∑N−ℓ+κ+2
t=κ+1 btQit , where

b = (bκ+1, . . . , bN−ℓ+κ+2) ∈ CN−ℓ+2\
⋃

∆′∈Γ′ X∆′ . Obviously,

codim

(
κ⋂
t=1

Dit

⋂
X
⋂
D̃iκ+1

⋂
D̃iκ+2

)
≥ κ+ 2.

Repeating the above argument, the construction is complete. Putting D̃it :=

Dit for 1≤ t ≤ κ, then {D̃i1 , . . . , D̃iℓ} are in general position on X. For any
permutation (i1, . . . , iq) of {1, . . . , q}, we can always construct homogeneous
polynomials {Pκ+1, . . . , Pℓ} satisfying (5), correspondingly.

Since there are only finitely choices of N -polynomials in {Q1, . . . , Qq}, we
can find a constant C > 0, independent of z, such that

|Pt(f)(z)| ≤ C max
κ+1≤j≤N−ℓ+t

∣∣Qij (f)(z)∣∣ = C
∣∣QiN−ℓ+t

(f)(z)
∣∣

for κ+ 1 ≤ t ≤ ℓ, and thus by the definition, we get

λDiN−ℓ+t
(f(z)) ≤ λD̃it

(f(z)) +O(1) for κ+ 1 ≤ t ≤ ℓ.(6)

Combining the above inequality with (4), we get

q∑
j=1

λDj
(f(z))(7)

≤
κ∑
t=1

λDit
(f(z)) +

N−ℓ+κ∑
t=κ+1

λDit
(f(z)) +

N∑
t=N−ℓ+κ+1

λDit
(f(z)) +O(1)
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≤
κ∑
t=1

λD̃it
(f(z)) +

N−ℓ+κ∑
t=κ+1

λDit
(f(z)) +

ℓ∑
t=κ+1

λD̃it
(f(z)) +O(1)

=

ℓ∑
t=1

λD̃it
(f(z)) +

N−ℓ+κ∑
t=κ+1

λDit
(f(z)) +O(1)

≤ N − ℓ+ κ

κ

(
ℓ∑
t=1

λD̃it
(f(z))

)
+O(1).

By (5), we can also construct a homogeneous polynomial

Pℓ+1 =

N+1∑
t=κ+1

bjtQit ,

which defines D̃iℓ+1
such that {D̃i1 , . . . , D̃iℓ+1

} are in general position onX. Let
I denote the set of all permutations of {1, . . . , q}, written as I = {I1, . . . , I#I}.
For each Ii := (i1, . . . , iq) ∈ I, we use Pi,κ+1, . . . , Pi,ℓ+1 to denote the poly-
nomials obtained from the hypersurfaces {Di1 , . . . , DiN+1

}. For each t ∈ {κ+
1, . . . , ℓ+ 1}, the polynomial Pi,t is determined only by Qiκ+1

, . . . , QiN−ℓ+t
, so

we can take a subset Î ⊆ I with cardinality l = q!
κ!(N−ℓ+1)!(q−N−1)! to construct

all possible polynomials of the above form [14]. By renumbering, we may put

Î = {I1, I2 . . . , Il}. Consider the map χ : X → Pk−1(C) defined by

χ(z) =: [Q1 : · · · : Qq : P1,κ+1(z) : · · · : P1,ℓ+1(z) : · · · : Pl,κ+1(z) : · · · : Pl,ℓ+1(z)]

for k = (ℓ− κ+ 1)l + q. Set Z = χ(X). Then χ is a finite morphism, Z is an
ℓ-dimensional algebraic subvariety of Pk−1(C), and △ := degZ ≤ dℓ degX.

Now, let {fλ, Uλ, λ ∈ Λ} be a system of local reduced representations of f .

Given any z /∈ ∪qj=1 (Qj(fλ))
−1

(0), set

c(z)=(c0,1(z), . . . , c0,q(z), c1,κ+1(z), . . . , c1,ℓ+1(z), . . . , cl,κ+1(z), . . . , cl,ℓ+1(z)) ,

in which ci,t(z) = λDt(fλ(z)) for i = 0, 1 ≤ t ≤ q, and ci,t(z) = λD̃it
(fλ(z)) for

1 ≤ i ≤ l, κ + 1 ≤ t ≤ ℓ + 1. Let I(Z) be the ideal in C [x1, . . . , xk] defining
Z. Put I(Z)u = C [x1, . . . , xk]u ∩ I(Z) for some positive integer u > △.

Since {D̃i1 , . . . , D̃iℓ+1
} are in general position with respect to X, we have, by

Lemma 2.2 and (7),

p

q∑
j=1

λDj
(fλ(z)) ≤

SZ(u, c(z))

uHZ(u)
+

(2ℓ+ 1)△
u

max
i,t

ci,t(z)(8)

for p = κ
(N−ℓ+κ)(ℓ+1) . Fix a basis ϕ0, . . . , ϕnu for V̂u, where V̂u =

C[x1,...,xk]u
I(Z)u

,

and nu = HZ(u)− 1. We consider the map

F = [ϕ0(χ ◦ f) : · · · : ϕnu
(χ ◦ f)] :M → Pnu .
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Set Fλ = (F0,λ, . . . , Fnu,λ), where Fj,λ = ϕj
(
Q1(fλ), . . . , Qq(fλ), P1,κ+1(fλ),. . .,

P1,ℓ+1(fλ), . . ., Pl,κ+1(fλ),. . ., Pl,ℓ+1(fλ)
)
for j = 0, 1, . . . , nu. Note that Fλ is a

reduced representation of F on Uλ, and F is linearly nondegenerate.
For aj = (aj1, . . . , ajk) ∈ Zk≥0, put xaj = x

aj1
1 · · ·xajkk . By the definition of

Hilbert weight, there exist monomials xa1 , . . . ,xaHZ (u) (depending on z) whose

residue classes modulo I(Z)u form a basis of V̂u such that
∑HZ(u)
j=1 aj · c =

SZ(u, c(z)). For each 1 ≤ j ≤ HZ(u), write xaj = Lj,z (ϕ0, . . . ϕnu
), where Lj,z

are linear forms that are linearly independent for every fixed z. Note that there
are only finitely many choices of Lj,z in total. We get

Lj,z (Fλ(z)) =
(
Q1 (fλ) (z)

)aj1
· · ·Qq

(
(fλ) (z)

)ajq
·
(
P1,κ+1 (fλ) (z)

)aj,q+1

· · ·Pl,ℓ+1

(
(fλ) (z)

)ajk
.

This gives that

− log |Lj,z (Fλ(z))| = aj · c(z)− u log ∥fλ(z)∥d ,
and then

−
HZ(u)∑
j=1

log |Lj,z (Fλ(z))| = SZ(u, c(z))− uHZ(u) log ∥fλ(z)∥d .(9)

By (8) and (9), we have

p

q∑
j=1

λDj
(fλ(z)) ≤

1

uHZ(u)

HZ(u)∑
j=1

λLj,z
(Fλ(z))(10)

+
1

u
log

∥fλ(z)∥du

∥Fλ(z)∥
+
(2ℓ+ 1)△

u
max
i,t

ci,t(z)+O

(
1

u

)
,

where O
(
1
u

)
denotes a bounded term independent of z. By the definition of

F , we have

c1 ∥fλ(z)∥du ≤ ∥Fλ(z)∥ ≤ c2 ∥fλ(z)∥du

for positive constants c1 and c2 independent of λ. We derive that

p

q∑
j=1

λDj (fλ(z)) ≤
1

uHZ(u)

HZ(u)∑
j=1

λLj,z (Fλ(z)) +
(2ℓ+ 1)△

u
max
i,t

ci,t(z) +O(1),

where the bounded term O (1) does not depend on z. Taking integration on
both sides of the above inequality, we obtain

∥p
q∑
j=1

mf (r,Dj) ≤
1

uHZ(u)

∫
M⟨r⟩

max
K

∑
j∈K

λLj (F(z))σ(11)

+
(2ℓ+ 1)△

u

∫
M⟨r⟩

∑
i,t

ci,t(z)σ +O(1),
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where maxK ranges over all subsets of all possible linear forms {Lj,z}. By
Lemma 2.4 and by the fact TF (r, s) = du · Tf (r, s) +O(1) [6], we have, for any
ε′ > 0,

∥p
q∑
j=1

mf (r,Dj)(12)

≤ dTf (r, s)−
NRamF (r, s)

uHZ(u)
+

dε′

HZ(u)
Tf (r, s)

+
(
HZ(u)− 1

2u
+

ε′

uHZ(u)

)(
m0(L; r, s) +Ricp(r, s) + κ log+ Y

(
r2
)
+ κ log+(r)

)
+

(2ℓ+ 1)△
u

[ ∑
1≤j≤q

mf (r,Dj) +
∑

1≤i≤l
κ+1≤t≤ℓ+1

mf (r, D̃it)

]
+O(1).

We next verify that

NRamF (r, s)

uHZ(u)
(13)

≥ p

q∑
j=1

[
Nf (r, s;Dj)−Nnu

f (r, s;Dj)
]

− (2ℓ+ 1)△
u

[ ∑
1≤j≤q

Nf (r, s;Dj) +
∑

1≤i≤l
κ+1≤t≤ℓ+1

Nf (r, s; D̃it)

]
.

From the assumption of subgeneral position, there are at most N -hypersurfaces
among {D1, . . . , Dq} passing through f(z) for any z ∈ ∪qj=1 (Qj(fλ))

−1
(0).

Without loss of generality, for fixed z, we may assume that

ordE,z(Q1(fλ)) ≥ · · · ≥ ordE,z(Qs(fλ)) > 0 = ordE,z(Qs+1(fλ))

= · · · = ordE,z(Qp(fλ)) ,

where ordE,z(Qj(fλ)) is the vanishing order of Qj(fλ) along E at z for some
fixed irreducible hypersurface E, and s ∈ {0, 1, . . . , N}. Denote Pκ+1, . . . , Pℓ+1

the polynomials obtained from {Q1, . . . , QN+1}, and then we have

ordE,z(Pt(fλ)) ≥ ordE,z(QN−ℓ+t(fλ)) , t = κ+ 1, . . . , ℓ+ 1.

We define

c = (c0,1, . . . , c0,q, c1,κ+1, . . . , c1,ℓ+1, . . . , ct,κ+1, . . . , ct,ℓ+1) ,

where ci,t = max{0, ordE,z
(
Qt(fλ)

)
− nu} for i = 0, 1 ≤ t ≤ q, and ci,t =

max{0, ordE,z(Pi,t(fλ)) − nu} for 1 ≤ i ≤ l, κ + 1 ≤ t ≤ ℓ + 1. Likewise, take

monomials xâ1 , . . . ,xâHZ (u) whose residue classes modulo I(Z)u form a basis
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of V̂u such that

HZ(u)∑
j=1

âj · c = SZ(u, c) for âj = (âj1, . . . , âjk) ∈ Zk≥0.

Furthermore, there are linear forms {Lj}HZ(u)
j=1 such that xâj = Lj (ϕ0, . . . , ϕnu

)

for every 1 ≤ j ≤ HZ(u). We then have

SZ(u, c) ≤
HZ(u)∑
j=1

max {0, ordE,z(Lj(Fλ))− nu} .(14)

On the flip side, by Lemma 2.2 we get

SZ(u, c)

uHZ(u)
≥ 1

ℓ+ 1

( κ∑
j=1

max {0, ordE,z(Qj(fλ))− nu}

+

ℓ∑
t=κ+1

max {0, ordE,z(QN−ℓ+t(fλ))− nu}
)
− (2ℓ+ 1)△

u
max
i,t

ci,t

≥ p

(
N∑
t=1

max {0, ordE,z(Qt(fλ))− nu}

)
− (2ℓ+ 1)△

u
max
i,t

ci,t

= p

 q∑
j=1

max {0, ordE,z(Qj(fλ))− nu}

− (2ℓ+ 1)△
u

max
i,t

ci,t.

Combining (14), Lemma 2.3 and the above inequality, we get

θ̃

uHZ(u)
≥ p

q∑
j=1

[
θ
Dj

f − θ
nu,Dj

f

]
− (2ℓ+ 1)△

u

[ q∑
j=1

θ
Dj

f +
∑

1≤i≤l
κ+1≤t≤ℓ+1

θ
Dit

f

]
.(15)

Integrating both sides of (15), we thus get (13). By (12) and (13) yields

∥ (pq − 1)Tf (r, s)

≤
(

ε′

HZ(u)
+

(2ℓ+ 1)△k
u

)
Tf (r, s) +

(
HZ(u)− 1

2du
+

ε′

duHZ(u)

)
·
(
m0(L; r, s)+Ricp(r, s)+κ log

+ Y
(
r2
)
+κ log+(r)

)
+
p

d

q∑
j=1

Nnu

f (r, s;Dj)

+
(2ℓ+ 1)△

du

[ ∑
1≤j≤q

mf (s,Dj) +
∑

1≤i≤l
κ+1≤t≤ℓ+1

mf (s, D̃it)

]
+O(1).

For any ε > 0, we choose u as the smallest integer such that

u >
(2ℓ+ 1)△k

pε
,

ε′

HZ(u)
+

(2ℓ+ 1)△k
u

< pε,(16)
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1≤j≤q

mf (s,Dj) +
∑

1≤i≤l
κ+1≤t≤ℓ+1

mf (s, D̃it) < u.

Hence

∥
(
q − N − ℓ+ κ

κ

(
ℓ+ 1

)
− ε

)
Tf (r, s)(17)

≤
q∑
j=1

1

d
Nnu

f (r, s;Dj)+c
(
m0(L; r, s)+Ricp(r, s)+ς log

+ Y
(
r2
)
+ς log+ r

)
,

where c ≤ HZ(u)−1
2dpu + 1. For some fixed s, we can choose u as the smallest

integer satisfying

u >
(2ℓ+ 1)△k

pε
,

ε′

HZ(u)
+

(2ℓ+ 1)△k
u

< pε

such that (17) makes sense. Then we give an explicit estimate for nu:

nu = HZ(u)− 1 ≤ △
(
u+ ℓ

ℓ

)
≤ degXdℓeℓ

(
1 +

u

ℓ

)ℓ
≤ (degX)ℓ+1

[
edℓ+1(N − ℓ+ κ)(2ℓ+ 5)l

κε

]ℓ
.

If {Q1, . . . , Qq} are not of the same degree, then we set d := lcm (d1, . . . , dq)

and apply (17) for the hypersurfaces {D1, . . . , Dq} defined by Q
d/d1
1 , . . . , Q

d/dq
q ,

respectively, which yields our result. □

3.2. Another proof of Corollary 1.2

Proof. Similarly, we only need to give proofs for the case, where {Q1, . . . , Qq}
have the same degree d.

For a positive integer L, let VL = C [x0, . . . , xn]L and V̂L =
C[x0,...,xn]L

I(X)L
,

where I(X) is the ideal of C [x0, . . . , xn] defining X and I(X)L = I(X) ∩
C [x0, . . . , xn]L. Denote [ϕ] the projection of ϕ in V̂L. In what follows, we

introduce a filtration of V̂L with respect to {Qi1 , . . . , Qiκ , Pκ+1, . . . , Pℓ}. For
brevity, we put Pt := Qit for 1 ≤ t ≤ κ.

We arrange, in lexicographic order, the ℓ-tuples i = (i1, . . . , iℓ) of non-
negative integers and put ∥i∥ :=

∑
j ij .

Definition (see [5, 7, 10]).

(i) For every i ∈ Zℓ≥0 and non-negative integer L with L ≥ d∥i∥, denote by I iL
the subspace of C[x0, . . . , xn]L−d∥i∥ consisting of all r∈C[x0, . . . , xn]L−d∥i∥
such that

P i11 · · ·P iℓℓ r −
∑

j=(j1,...,jℓ)>i

P j11 · · ·P iℓℓ rj ∈ I(X)L
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or

[
P i11 · · ·P iℓℓ r

]
=

∑
j>i

P j11 · · ·P iℓℓ rj

 on V̂L

for some rj ∈ C [x0, . . . , xn]L−d∥j∥;

(ii) Let I i denote the homogeneous ideal in C [x0, . . . , xn] generated by⋃
L≥d∥i∥

I iL.

Remark 3.1 (see [5, 7, 10]). From the above definition, we have the following
properties.

(i) (I(X), P1, . . . , Pℓ)L−d∥i∥ ⊆ I iL ⊆ C [x0, . . . , xn]L−d∥i∥, where (I(X), P1 ,

. . . , Pℓ) is the ideal in C [x0, . . . , xn] generated by I(X) ∪ {P1, . . . , Pℓ};
(ii) I i ∩ C [x0, . . . , xn]L−d∥i∥ = I iL;

(iii) If i1 − i2 := (i1,1 − i2,1, . . . , i1,ℓ − i2,ℓ) ∈ Zℓ≥0, then I
i2
L ⊆ I i1L+d∥i1∥−d∥i2∥.

Hence I i2 ⊆ I i1 .

Here, we set

∆i
L := dim

C [x0, . . . , xn]L−d∥i∥

I iL
.(18)

Lemma 3.2 (see [5, 7, 10]).

(i)
{
I i | i ∈ Zℓ≥0

}
is a finite set.

(ii) There exists a positive integer L0 such that, for every i ∈ Zℓ≥0, ∆i
L is

independent of L for all L satisfying L− d∥i∥ > L0.
(iii) For all L and i with L− d∥i∥ ≥ 0, ∆i

L is bounded.

Subsequently, we construct the filtration of VL and V̂L with respect to
{P1, . . . , Pℓ} for a fixed large enough integer L.

Let τL denote the set of all i ∈ Zℓ≥0 with L − d∥i∥ ≥ 0, arranged by the
lexicographic order. Define the spaces Wi =WL,i by

Wi =
∑
j≥i

P j11 · · ·P jℓℓ VL−d∥j∥.

Clearly, W(0,...,0) = VL and Wi ⊃ Wi′ if i
′ > i, thus {Wi} is a filtration of VL.

Set Ŵi = {[g] | g ∈Wi}. Hence, {Ŵi} is a filtration of V̂L.

Lemma 3.3 (see [5, 7, 10]). If i′ follows i in lexicographic ordering, then

Ŵi

Ŵi′

∼=
C [x0, . . . , xn]L−d∥i∥

I iL
= ∆i

L.

By Lemma 3.2, for every i ∈ Zℓ≥0, there is an integer L0, such that∆i
L is a

constant for all L satisfying L − d∥i∥ > L0. Here, we let ∆i be this constant.
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Take ∆0 := mini∈Zℓ
≥0

∆i. Then ∆0 = ∆i0 for some i0 ∈ Zℓ≥0. By (iii) of the

remark below Section 3.2, if i− i0 ∈ Zℓ≥0, then ∆i ≤ ∆i0 . Set

τ0L :=
{
i ∈ τL : L− d∥i∥ > L0 and i− i0 ∈ Zℓ≥0

}
.

Then we have the following lemma.

Lemma 3.4 (see [5, 7, 10]).

(i) ∆0 = ∆i for all i ∈ τ0L;

(ii) ♯τ0L = 1
dℓ
Lℓ

ℓ! +O
(
Lℓ−1

)
;

(iii) ∆i
L = ∆dℓ for all i ∈ τ0L, where ∆ = degX.

Now, for L big enough, divisible by d, and for every 1 ≤ j ≤ ℓ,∑
i∈τL

ij =
∆Lℓ+1

dℓ+1(ℓ+ 1)!
+O

(
Lℓ
)
.(19)

(For a proof see (3.6) in [10].) Then combining (19) with Lemma 3.4, for every
1 ≤ j ≤ ℓ, we have ∑

i∈τL

∆i
Lij =

∆Lℓ+1

d(ℓ+ 1)!
+O

(
Lℓ
)
.(20)

Let {Uλ, λ ∈ Λ} be an open covering of M , and denote by fλ : Uλ → Cn+1

a reduced representation of f on Uλ, correspondingly. Set u := dim V̂L and

choose a basis B = {ψ1, . . . , ψu} for V̂L with respect to the filtration. Let ψs be

an element of B, which lies inside Ŵi\Ŵ ′
i . We thus write ψs = [P i11 · · ·P iℓℓ r],

where r ∈ VL−d∥i∥. By the definition of the Weil function and (20), we get

u∑
s=1

λψs(fλ(z)) ≥
(

∆Lℓ+1

d(ℓ+ 1)!
+O

(
Lℓ
))

·
ℓ∑
t=1

λD̃it
(fλ(z)) +O(1),(21)

where O(1) denotes a bounded term which depends only on the ψs’, but not
on fλ and z.

We fix a basis {ϕ1, . . . , ϕu} for V̂L, and let Fλ = (ϕ1 (fλ) , . . . , ϕu (fλ)). Then
F = P (Fλ) is independent of choices of λ. Therefore, we can define a mero-
morphic map F : M → Pu−1(C). Write the basis B as linear forms L1, . . . , Lu

in ϕ1, . . . , ϕu satisfying ψs (fλ) = Ls (Fλ), s = 1, . . . , u. By the definition of F,
there exist positive constants c1 and c2, independent of λ, such that

c1 ∥fλ(z)∥L ≤ ∥Fλ(z)∥ ≤ c2 ∥fλ(z)∥L .
Combining the above inequality with (21), we obtain

u∑
s=1

λLs
(Fλ(z)) ≥

(
∆Lℓ+1

d(ℓ+ 1)!
+O

(
Lℓ
))

·
ℓ∑
t=1

λD̃it
(fλ(z)) +O(1).(22)

The linear forms L1, . . . , Lu are linearly independent, and we have, by the
assumption of algebraic non-degeneracy of f , that F :M → Pu−1(C) is linearly
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nondegenerate. Since there are only finitely many choices of N -polynomials in
{Q1, . . . , Qq}, then the collection of all possible linear forms Ls (1 ≤ s ≤ u) is

a finite set. For simplicity, we denote it by L := {Lj}Λj=1, Λ <∞.

Hence, by (7) and (22), taking integration on the pseudo-sphere of radius r,
we have (

∆Lℓ+1

d(ℓ+ 1)!
+O

(
Lℓ
))

·
q∑
j=1

mf (r,Dj)(23)

≤ N − ℓ+ κ

κ

∫
M⟨r⟩

max
K

∑
j∈K

λLj
(F (z))σ +O(1),

where the maximum is taken over all subsets K ⊆ {1, . . . ,Λ} with #K = u such
that {Lj}j∈K are linearly independent. Since NRamF (r, s) ≥ 0, Lemma 2.4

yields that, for r > s > 0, and any ε′ > 0 (which will be chosen later),

∥
∫
M⟨r⟩

max
K

∑
j∈K

λLj
(F (z))σ

≤ (u+ ε′)TF (r, s)

+

(
u(u− 1)

2
+ε′
)(

m0(L; r, s)+Ricp(r, s)+ς log
+ Y

(
r2
)
+ς log+(r)

)
+O(1).

Combining the above inequality with (23), we have

∥
(

∆Lℓ+1

d(ℓ+ 1)!
+O

(
Lℓ
))

·
q∑
j=1

mf (r,Dj)(24)

≤ N − ℓ+ κ

κ

{
(u+ ε′)TF (r, s)

+

(
u2− u

2
+ε′
)(

m0(L; r, s)+Ricp(r, s)+ς log
+ Y

(
r2
)
+ς log+(r)

)}
+O(1).

Now, we encounter a comparison between TF (r, s) and Tf (r, s). By [6], we get

TF (r, s) = L · Tf (r, s) +O(1).

Since we have, for L big enough

u = HX(L) = ∆
Lℓ

ℓ!
+O

(
Lℓ−1

)
,

(24) gives that

∥
q∑
j=1

mf (r,Dj)

≤ N − ℓ+ κ

κ

[
d(ℓ+ 1)!

∆Lℓ
(
1 + o(1)

) (u+ ε′)Tf (r, s)
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+ CL

(
m0(L; r, s) + Ricp(r, s) + ς log+ Y

(
r2
)
+ ς log+(r)

)]
,

where

CL := ∆
ℓ+ 1

2ℓ!
Lℓ−1 +O

(
Lℓ−2

)
is a constant dependent on L. For L large enough, we may suppose

d(ℓ+ 1)!(u+ ε′)

∆Lℓ
(
1 + o(1)

) ≤ d(ℓ+ 1) + ε.

Hence, we have

∥
q∑
j=1

mf (r,Dj)(25)

≤ N − ℓ+ κ

κ

(
d(ℓ+ 1) + ε

)
Tf (r, s)

+ CL
(
m0(L; r, s) + Ricp(r, s) + ς log+ Y

(
r2
)
+ ς log+ r

)
.

Thus, this completes the proof. □
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