DOI QR코드

DOI QR Code

탐구 기반 모의 수업 실연이 예비 교사들의 과학적 자기 효능감, 과학 내재 동기에 미치는 영향

Enhancing Science Self-efficacy and Science Intrinsic Motivation through Simulated Teaching-learning for Pre-service Teachers

  • 투고 : 2023.10.13
  • 심사 : 2023.11.15
  • 발행 : 2023.11.30

초록

이 연구에서는 교원양성 과정에서 예비 교사들이 수행하는 과학과 탐구 기반 모의 수업 실연에 대한 개선 방안을 도출하고, 예비 교사들이 개선 방안이 반영된 모의 수업을 실연하면서, 모의 수업 전과 후 과학적 자기 효능감에 따른 과학 내재 동기 차이를 분석하고자 하였다. 연구 대상으로는 현직 초등과 중등 교사 5인이 탐구 기반 모의 수업 실연 개선 방안 도출에, 교육대학교 3학년에 재학 중인 예비 교사를 대상으로 과학 내재 동기 차이 분석을 실시하였다. 탐구 기반 모의 수업 실연 개선 방안 도출에는 전문가 협의회에 계층분석과정(AHP)을 적용하였으며, 모의 수업 실연 전과 후 과학적 자기 효능감에 다른 과학 내재 동기 차이 분석에는 이원분산분석과 MANOVA 명령문을 통한 사후 분석을 실시하였다. 연구 결과는 다음과 같다. 탐구 기반 모의 수업 실연 개선에는 디지털·생태 소양과 민주 시민 의식 함양을 위한 활동과 과학과 핵심역량 함양을 위한 과학 탐구·학생 활동 중심의 수업·소집단 활동이 포함될 필요성을 제안하였다. 그리고 개선 사항을 반영하여 예비 교사들이 초등학교 과학의 '지구와 우주' 영역에서 7차시에 걸쳐 교수-학습 과정안을 작성하고 모의 수업을 실연하였다. 과학 내재 동기의 경우 모의 수업 전과 후, 과학적 자기 효능감의 모든 수준에서 유의미한 차이가 나타났으며, 모의 수업 실연 여부와 과학적 자기 효능감과의 상호작용 효과에도 유의미한 차이가 나타났다. 특히, 과학적 자기 효능감이 낮은 집단에서 모의 수업 실연에 따른 과학 내재 동기에 차이가 크게 나타난 것을 도출할 수 있었다. 학교 현장의 학생들의 과학 성취와 정의적 영역 향상을 위해서는 교사의 과학적 자기 효능감과 내재 동기 함양이 필요하다. 이를 위해서는 예비 교사 교육과정에서부터 학교 현장성을 반영한 탐구 기반 모의 수업 실연을 실시할 필요성이 있음을 제안한다.

The purpose of this investigation is to: (1) to derive an improvement factor for inquiry-based simulated teaching-learning in pre-service teacher training programs, and pre-service teachers practice simulated teaching that reflect the improvement factor, (2) to analyze the difference in science intrinsic motivation according to science self-efficacy and inquiry-based simulated teaching-learning experience. To achieve these goals, we recruited five elementary and secondary teachers as experts to help us develop an improvement factor based on expert interviews. Subsequently, third-year pre-service teachers of a university of education participated in our analysis of differences in science intrinsic motivation, according to their level of science self-efficacy and experience with inquiry-based simulated teaching-learning. Our methodology involved applying the analytic hierarchy process to expert interviews to derive improvement factor for inquiry-based simulated teaching-learning, followed by a two-way ANOVA to identify significant differences in science intrinsic motivation between groups with varying levels of science self-efficacy. We also conducted post-analysis through MANOVA statements. The results of our study indicate that inquiry-based simulated teaching-learning can be improved through activities that foster digital literacy, ecological literacy, democratic citizenship, and scientific inquiry skills. Moreover, small group activities and student-centered teaching-learning approaches were found to be effective in developing core competencies and promoting science achievements. Specifically, pre-service teachers prepared a teaching-learning course plan and inquiry-based simulated teaching-learning in seventh-grade in the Earth and Space subject area. Pre-service teachers' science intrinsic motivation analyze significant differences in all levels of science self-efficacy before and after simulated teaching-learning and significant difference in the interaction effect between simulated teaching-learning and scientific self-efficacy. Particularly, group with low scientific self-efficacy, the difference in science intrinsic motivation according to simulated teaching-learning was most significant. Teachers' scientific self-efficacy and intrinsic motivation are needed to improve science achievement and affective domains of students in class. Therefore, this study contributes to suggest inquiry-based simulated teaching-learning reflecting school practices from the pre-service teacher curriculum.

키워드

과제정보

이 논문은 2023년도 대구교육대학교 학술연구비 지원에 의하여 연구되었음.

참고문헌

  1. Alucdibi, F., & Ekici, G. (2012). The effect of biology teachers' classroom management profiles on the biology course motivation level of the high school students. Hacettepe University Journal of Education, 43, 25-36.
  2. Ates, H., & Saylan, A. (2015). Investigation of Pre-Service Science Teachers' Academic Self-Efficacy and Academic Motivation toward Biology. International Journal of Higher Education, 4(3), 90-103.
  3. Bandura, A. (1997). Self-Efficacy: The Exercise of Control. New York: Freeman.
  4. Blanchard, M., Southerland, S., Osborne, J., Sampson, V., Annetta, L., & Granger, E. (2010). Is inquiry possible in light of accountability? A quantitative comparison of the relative effectiveness of guided inquiry and verification laboratory instruction. Science Education, 94(4), 577-616. https://doi.org/10.1002/sce.20390
  5. Coladarci, T. (1992). Teachers' sense of efficacy and commitment to teaching. Journal of Experimental Education, 60(4), 323-337. https://doi.org/10.1080/00220973.1992.9943869
  6. Cook, T., Campbell, D., & Shadish, W. (2002). Experimental and quasi-experimental designs for generalized causal inference (pp. 103-134). Boston, MA: Houghton Mifflin.
  7. Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage publications.
  8. Creswell, J., & Poth, C. (2016). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.
  9. Duschl, R. (2003). Assessment of inquiry. In J. M. Atkin & J. Coffey (Eds.), Everyday assessment in the science classroom (pp. 41-59). Arlington, VA: NSTA Press.
  10. Eo, S. (2004). Effects of research classes on the achievements in inquiry instruction and science-related affective domain. Journal of Gangwon Science Education Research, 9(1), 13-22.
  11. Fur tak, E., Seidel, T., Iverson, H., & Briggs, D. (2012). Experimental and quasi-experimental studies of inquirybased science teaching: A Meta-analysis. Review of Educational Research, 82(3), 300-329. https://doi.org/10.3102/0034654312457206
  12. Gencer, A., & Cakiroglu, J. (2007). Turkish preservice science teachers' efficacy beliefs regarding science teaching and their beliefs about classroom management. Teaching and Teacher Education, 23(5), 664-675. https://doi.org/10.1016/j.tate.2005.09.013
  13. Ghaffar , S., Hamid, S., & Thomas, M. (2019). Impact of Teacher's Self-Efficacy on Student's Motivation towards Science Learning. Review of Economics and Development Studies, 5(2), 225-234.
  14. Glynn, S., Taasoobshirazi, G., & Brickman, P. (2009). Sci-ence motivation questionnaire: Construct validation with nonscience majors. Journal of Research in Science Teach-ing, 46, 127-146.
  15. Ha, M., Kim, M., Park, K., & Lee, J. (2012a). The analysis of differences in structure of natural science high school students' science learning motivation in terms of school year and gender. Secondary Education Research, 60(2), 365-384. https://doi.org/10.25152/ser.2012.60.2.365
  16. Ha, M., Kim, M., Par k, K., & Lee, J. (2012b). The analysis of level and structure of natural science high school students' science motivation compared to general high school students. Journal of the Korean Association for Science Education, 32(5), 866-878. https://doi.org/10.14697/jkase.2012.32.5.866
  17. Ha, M., Lee, K., Choi, E., Kim, I., Yu, J., & Won, B. (2019). Exploring the effect of first year science-focused school program on high school students' science core competency and science learning motivation using group-based trajectory modeling. Journal of The Korean Association For Science Education, 39(6), 799-807.
  18. Jeong, Y., Min, Y., & Lee, J. (2019). A study on understanding of key competency curriculum in the 2015 revised curriculum. Journal of earner-Centered Curriculum and Instruction, 19(18), 211-237.
  19. Kim, A., & Par k, I. (2001). Construction and validation of academic self-efficacy scale. The Journal of Educational Research, 39(1), 95-123.
  20. Kim, S., & Kim, H. (2022). The Effects of Chemistry Class Using Computer-Based Science Inquiry Program on Positive Experiences about Science, Science Core Competency, and Academic Achievement. Journal of the Korean Chemical Society, 66(2), 107-123.
  21. Kobar g, M., Prenzel, M., & Seidel, T. (2011). An international comparison of science teaching and learning. Further results from PISA 2006. Waxmann Verlag.
  22. Kwak, Y. (2012). Research on Ways to Improve Science Teaching Methods to Develop Students' Key Competencies. Journal of the Korean Association for Science Education, 32(5), 855-865. https://doi.org/10.14697/JKASE.2012.32.5.855
  23. Lay, Y., Ng, K., & Chong, P. (2015). Analyzing Affective Factors Related to Eighth Grade Learners' Science and Mathematics Achievement in TIMSS 2007. Asia-Pacific Education Researcher (Springer Science & Business Media B.V.), 24(1), 103-110. https://doi.org/10.1007/s40299-013-0163-0
  24. Lee, G., Kim, Y., Jang, W., Lee, J., & Hong, H. (2020). The Effect of [Science Inquiry Experiment] of 2015 Revised National Curriculum Towards High School Students' Science and General Core Competencies. Journal of Curriculum Evaluation, 23(3), 23-50. https://doi.org/10.29221/jce.2020.23.3.23
  25. Lee, H. (2022). Validation of Science Self-Efficacy Scale for Pre-Service Teachers and Latent Mean Analysis According to Background Variable. Journal of Korean Elementary Science Education, 41(1), 65-78.
  26. Lee, H. (2023). Effects of Pre-Service Elementary Teachers' Scientific Self-Efficacy by Science Motivation according to the Academic Track in High School. Journal of Science Education, 47(1), 63-74. https://doi.org/10.21796/JSE.2023.47.1.63
  27. Lee, H., & Lee, H. (2016). Effects of systems thinking on high school students' science self-efficacy. The Journal of the Korean Earth Science Society, 37(3), 133-145. https://doi.org/10.5467/JKESS.2016.37.3.133
  28. Lee, H., Bae, T., & Lee, H. (2016). Development and Application of the Scientific Inquiry-based STEAM Education Program about Earthquakes. The Journal of The Korean Earth Science Society, 37(7), 476-488. https://doi.org/10.5467/JKESS.2016.37.7.476
  29. Lee, H., Longhurst, M., & Lee, H. (2017). An exploratory study on the effect of gifted students' science motivation on science self-efficacy. Journal of Research in Curriculum & Instruction, 21(1), 24-33. https://doi.org/10.24231/rici.2017.21.1.24
  30. Lee, K., Min, Y., Jeon, J., Kim, M., & Kim, H. (2008). A vision study on enhancing the core competencies of future Korean individuals through elementary and middle school curricula (Par t II): Focusing on sub-factors setting of core competencies by domain. Research Report RRC2008-7-1, Korea Institute for Curriculum and Evaluation.
  31. Lee, Y., & Hong, S. (2009). The effects of science process skin and academic achievement by the freedom inquiry using llM. Journal of the Korean Society of Earth Science Education, 2(1), 33-40.
  32. Min, D., Kang, H., & Choi H. (2012). Analysis of Relationship Between Childrens' Ego-Resilience and Study Habit in Terms of Moderating Effects of Mothers' Parenting Styles. Journal of cognitive Enhancement and Intervention, 3(2), 65-79.
  33. Ministry of Education (MOE), & Korea Educational Development Institute(KEDI). (2021). Handbook for Competency Assessment of Teacher Training Institutions in 2021. Ministry of Education: Sejong.
  34. Ministry of Education (MOE). (2015). Science curriculum. Notification No. 2015-74 [issue 9]. Sejong: Ministry of Education.
  35. Ministry of Education (MOE). (2022). 2022 revised curriculum: Science. Sejong: Ministry of Education.
  36. National Research Council. (1996). National science education standards. Washington, DC: National Academies Press.
  37. NGSS. (2013). Next Generation Science Standards: For States, By States. USA: NGSS Lead States.
  38. OECD. (2003). Defining and selection of competencies: Theoretical and conceptual foundation. OECD Press.
  39. Pajares, F. (1996). Self-Efficacy beliefs in academic settings. Review of Educational Research, 66(4), 543-578. https://doi.org/10.3102/00346543066004543
  40. Peciuliauskiene, P. (2020). School students' self-confidence in science and intrinsic motivation for learning science: self-concept and self-efficacy approach. Pedagogika, 137(1), 138-155. https://doi.org/10.15823/p.2020.137.8
  41. Prenzel M., Seidel T., & Kobarg M. (2012) Science Teaching and Learning: An International Comparative Perspective. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second International Handbook of Science Education (pp. 667-678). Netherlands: Springer Science & Business Media.
  42. Saaty, T. (1970). How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48, 9-26. https://doi.org/10.1016/0377-2217(90)90057-I
  43. Saaty, T. (1980). The analytic hierarchy process: Planning, Priority Setting, Resource Allocation. McGraw-Hill.
  44. Saaty, T. (2008). Relative measurement and its generalization in decision making why pairwise comparisons are central in mathematics for the measurement of intangible factors the analytic hierarchy/network process. RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicasy Naturales. Serie A. Matematicas, 102(2), 251-318. https://doi.org/10.1007/BF03191825
  45. Schunk, D. H., & Pajares, F. (2001). The development of academic self-efficacy. In A. Wigfield & J. Eccles (Eds.), Development of achievement motivation. San Diego: American Press.
  46. Shin, M. (2018). Effects of project-based learning on students' motivation and self-efficacy. English Teaching, 73(1), Spring 2018.
  47. Skaalvik, E., & Skaalvik, S. (2004). Self-Concept and self-efficacy: A test of the internal/external frame of reference model and predictions of subsequent motivation and achievement. Psychological Reports, 95, 1187-1202. https://doi.org/10.2466/pr0.95.3f.1187-1202
  48. Sohn, W. (2017). International patterns of formative assessment in science lessons: Further results from PISA 2015. Journal of Educational Evaluation, 30(2), 269-290.
  49. Sohn, W., & Park, J. (2017). A Latent Profile Analysis of Inquiry-Based Science Teaching and Learning Practices: A Comparative Analysis of PISA 2015 Data of Korea and Singapore. Journal of Research in Curriculum & Instruction, 21(6), 698-707. https://doi.org/10.24231/RICI.2017.21.6.698
  50. Sotiriou, S. A., & Bogner, F. X. (2020). Education Sciences How Creativity in STEAM Modules Intervenes with Self-Efficacy and Motivation.
  51. Tark, M. (2011). The relationships among science self-efficacy, science attitudes and academic achievement of elementary student (Unpublished M.E. thesis). Seoul National University of Education, Seoul, Korea.
  52. Temiz, T., & Topcu, M. S. (2013). Preservice teachers' teacher efficacy beliefs and constructivist-based teaching practice. European Journal of Psychology of Education, 28(4), 1435-1452. https://doi.org/10.1007/s10212-013-0174-5
  53. Titrek, O., Cetin, C., Kaymak, E., & Kasikci, M. (2018). Academic Motivation and Academic Self-Efficacy of Prospective Teachers. Journal of Education and Training Studies, 6(11a), 77-87.
  54. Wind, Y., & Saaty, T. (1980). Marketing applications of the analytic hierarchy process. Management Science, 26(7), 641-658. https://doi.org/10.1287/mnsc.26.7.641
  55. Wang, M. M., Wu, K., & Huang, T. I. (2007) A study on the factors affecting biological concept learning of junior high school students. International Journal of Science Education, 29(4), 453-464.
  56. Yoon, H., Kim, Y., Lee, K., & Jeon, J. (2007). A vision study on enhancing the core competencies of future Korean individuals through elementary and middle school curricula (part I): Focusing on the basis of core competencies and domain settings. Research Report RRC 2007-1, Korea Institute for Curriculum and Evaluation.
  57. Yu, E., Park, J., & Lee, H. (2022). Improving the 2022 revised science curriculum: elementary school "Earth and Universe" units. Journal of Korean Elementary Science Education, 41(2), 173-185.