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q-POLY-EULER NUMBERS AND POLYNOMIALS OF THE
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Abstract. In this paper, we construct a fully modified q-poly-Euler num-
bers and polynomials of the second type and give some properties. Finally,

we investigate the zeros of the fully modified q-poly-Euler numbers and

polynomials of the second type by using computer.
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1. Introduction

In this paper, we investigate the zeros of the fully modified q-poly-Euler num-
bers and polynomials of the second type. Throughout this paper, the symbol,
N,Z,Z+,R and C denotes the set of natural numbers, the set of integers, the set
of nonnegative integers, the set of real numbers and the set of complex numbers,
respectively.

The q-number is defined by

[x]q =
1− qx

1− q
,

where x, q ∈ R with q ̸= 1. We note that limq→1[x]q = x. From the definition
of q-number, many mathematicians studied the this field such as q-differential
equations, q-series, q-trigonometric function, and so on, see [1-2, 10-16]. Of
course, mathematicians constructed and researched about Gaussian binomial
coefficients.

Definition 1.1. The Gaussian binomial coefficients are defined by[
n
k

]
q

=
[n]q!

[n− k]q![k]q!
=

[
n

n− k

]
q

.
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We note [n]q! = [n]q[n− 1]q · · · [1]q.
Definition 1.2. Two forms of q-exponential functions can be expressed as

Eq(t) =

∞∑
n=0

q(
n
2) tn

[n]q!
eq(t) =

∞∑
n=0

tn

[n]q!
.

We remember that the classical Stirling numbers of the second kind S2(n,m)
are defined by the relations (see [14])

(x)n =

n∑
m=0

S2(n,m)xm.

Here (x)n = x(x − 1) · · · (x − n + 1) denotes the falling factorial polynomial
of order n. The numbers S2(n,m) also admit a representation in terms of a
generating function

(et − 1)m

m!
=

∞∑
n=m

S2(n,m)
tn

n!
.

The familiar tangent polynomials Tn(x) are defined by the generating function
(see [8, 9]): (

2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
, (|2t| < π). (1.1)

When x = 0, Tn(0) = Tn are called the tangent numbers.

For k ∈ Z, 0 < q < 1, the q-poly-tangent polynomials T
(k)
n,q (x), the q-poly-

Bernoulli polynomials B
(k)
n,q(x), the q-poly-Euler polynomials E

(k)
n,q(x) are defined

by means of the following generating functions:

2Lik,q(1− e−t)

e2t + 1
ext =

∞∑
n=0

T (k)
n,q (x)

tn

n!
,

Lik,q(1− e−t)

et − 1
ext =

∞∑
n=0

B(k)
n,q(x)

tn

n!
,

2Lik,q(1− e−t)

et + 1
ext =

∞∑
n=0

E(k)
n,q(x)

tn

n!
,

(1.2)

where

Lik,q(t) =

∞∑
n=1

tn

[n]kq

is the kth q-polylogarithm function( see [5, 6]).
In [4], we construct modified poly-tangent numbers and polynomials.

Definition 1.3. For any integer k, the modified poly-tangent polynomials T
(k)
n (x)

are defined by means of the generating function
∞∑

n=0

T (k)
n (x)

tn

n!
=

2Lik(1− e−t)

t(e2t + 1)
ext. (1.3)
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The numbers T
(k)
n (0) := T

(k)
n are called the modified poly-tagent numbers. If

k = 1, then T
(1)
n (x) = Tn(x), T

(1)
n = Tn. It is more natural than (1.2) because it

becomes a tangent polynomial when k = 1 in Definition 1.3.
Many kinds of of generalizations of these polynomials and numbers have been

presented in the literature (see [1-14]). In the following section, we give some
relationships, both between these polynomials and tangent polynomials and be-
tween these polynomials and other polynomials. Finally, we investigate the
zeros of the fully modified q-poly-tangent polynomials of the second type by
using computer.

2. The fully modified q-poly-tangent polynomials of the second type

In this section, we define the fully modified q-poly-Bernoulli and tangent num-
bers and polynomials of the second type. We also derive several identities with
each other and investigate some properties that are concerned with q-Stirling
numbers. In [4], we construct the fully modified q-poly-tangent polynomials

T̃
(k)
n,q (x) of the first type.

Definition 2.1. For n ∈ Z+, k ∈ Z and 0 < q < 1, we define fully modified

q-poly-tangent polynomials T̃
(k)
n,q (x) of the first type by

[2]qLik,q(1− eq(−t))

t(eq(2t) + 1)
eq(xt) =

∞∑
n=0

T̃ (k)
n,q (x)

tn

[n]q!
. (2.1)

When x = 0, T̃
(k)
n,q = T̃

(k)
n,q (0) are called the fully modified q-poly-tangent

numbers of the first type. Now we construct a new type of the fully modified
q-poly-tangent polynomials of the first type.

Definition 2.2. For n ∈ Z+, k ∈ Z, and 0 < q < 1, we define the fully modified

q-poly-tangent polynomials T
(k)
n,q(x) of the second type by

[2]qLik,q(1− Eq(−t))

t(Eq(2t) + 1)
Eq(xt) =

∞∑
n=0

T(k)
n,q(x)

tn

[n]q!
. (2.2)

When x = 0, T
(k)
n,q = T

(k)
n,q(0) are called fully modified q-poly-tangent numbers

of the second type.
The modified q-Stirling numbers of the second kind, S∗

q (n,m) are defined by
the following generating function

∞∑
n=m

S∗
q (n,m)

tn

[n]q!
=

(Eq(t)− 1)m

[m]q!
. (2.3)

For 0 ≤ n,m ≤ 5, a few values of the modified q-Stirling numbers of second
kind are given as below.

We also define the fully modified q-poly-Bernoulli polynomials B
(k)
n,q(x) of the

second type. Using the generating functions of the polynomials, we derive some
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Table 1. The modified q-Stirling numbers of second kind
S∗
q (n,m)

n
m

0 1 2 3 4 5

0 1 0 0 0 0 0
1 0 1 0 0 0 0

2 0 q(
2
2) 1 0 0 0

3 0 q(
3
2) 2q[3]q!

[2]q![2]q!
1 0 0

4 0 q(
4
2) q2[4]q!

([2]q!)3
+

2q3[4]q!

[2]q![3]q!

3q[4]q!

[2]q![3]q!
1 0

5 0 q(
5
2) 2q4[5]q!

[2]q![3]q!
+

2q6[5]q!

[2]q![4]q!

3q3[5]q!

([3]q!)2
+

3q2[5]q!

([2]q)2[3]q!

4q[5]q!

[2]q![4]q!
1

identities that are related with the fully modified q-poly-tangent polynomials
of the second type and the q-analogue of ordinary tangent polynomials of the
second type.

Definition 2.3. For n ∈ Z+, k ∈ Z, and 0 < q < 1, we define fully modified

q-poly-Bernoulli polynomials B
(k)
n,q(x) of the second type by

Lik,q(1− Eq(−t))

Eq(t)− 1
Eq(xt) =

∞∑
n=0

B(k)
n,q(x)

tn

[n]q!
. (2.4)

Corollary 2.4. If k = 1 in polylogarithm function, we get the q-Bernoulli poly-
nomials Bn,q(x) and q-tangent polynomials Tn,q(x) of the second type,

t

Eq(t)− 1
Eq(xt) =

∞∑
n=0

Bn,q(x)
tn

[n]q!
,

[2]q
Eq(2t) + 1

Eq(xt) =

∞∑
n=0

Tn,q(x)
tn

[n]q!
,

respectively.

Corollary 2.5. If q → 1 in Definition 2.2 and 2.3, we obtain the poly-Bernoulli

polynomials B
(k)
n (x) and poly-tangent polynomials T

(k)
n (x)

Lik(1− e−t)

et − 1
ext =

∞∑
n=0

B(k)
n (x)

tn

n!
,

2Lik(1− e−t)

t(e2t + 1)
ext =

∞∑
n=0

T (k)
n (x)

tn

n!
,

respectively.



Numerical investigation of zeros of the fully q-poly-Euler numbers and polynomials 379

Using (2.2), it is clear that next theorem is obtained.

Theorem 2.6. Let n ∈ Z+, k ∈ Z and 0 < q < 1. Then we have

B(k)
n,q(x) =

n∑
l=0

[
n
l

]
q

q(
n−l
2 )B

(k)
l,q xn−l,

T(k)
n,q(x) =

n∑
l=0

[
n
l

]
q

q(
n−l
2 )T

(k)
l,q xn−l.

Using the q-exponential functions, we introduce the following fully modified
polynomials of the second type with two variables.

Definition 2.7. Let n ∈ Z+, k ∈ Z, and 0 < q < 1. We define the fully modified

q-poly-tangent polynomials T
(k)
n,q(x, y) of the second type with two variables as

below
[2]qLik,q(1− Eq(−t))

t(Eq(2t)− 1)
Eq(xt)eq(yt) =

∞∑
n=0

T(k)
n,q(x, y)

tn

[n]q!
. (2.5)

Theorem 2.8. Let n be a nonnegative integer, k ∈ Z and 0 < q < 1. Then we
get

T(k)
n,q(x, y) =

n∑
l=0

[
n
l

]
q

T
(k)
l,q (x)y

n−l. (2.6)

Proof. Let n ∈ Z+ and k ∈ Z. Then we have

∞∑
n=0

T(k)
n,q(x, y)

tn

n!
=

[2]qLik,q(1− Eq(−t))

t(Eq(2t) + 1)
Eq(xt)eq(yt)

=

∞∑
n=0

(
n∑

l=0

[
n
l

]
q

T
(k)
l,q (x)y

n−l

)
tn

[n]q!
.

Hence, we get

T(k)
n,q(x, y) =

n∑
l=0

[
n
l

]
q

T
(k)
l,q (x)y

n−l.

□

Corollary 2.9. Let n be a nonnegative integer, k ∈ Z, and 0 < q < 1. If we
take y = −x, we obtain

T(k)
n,q(x,−x) =

n∑
l=0

[
n
l

]
q

T
(k)
l,q (x) (−x)n−l.

The fully modified q-poly-tangent polynomials of the second type with two
variables are expressed by the following recurrence formula.
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Theorem 2.10. For n ∈ N, k ∈ Z and 0 < q < 1, then we derive

T(k)
n,q(x, y)−T(k)

n,q(x) =

n−1∑
l=0

[
n
l

]
q

yn−lT
(k)
l,q (x).

Proof. Let k ∈ Z and 0 < q < 1. Using (2.2), we have

∞∑
n=0

T(k)
n,q(x, y)

tn

[n]q!
−

∞∑
n=0

T(k)
n,q(x)

tn

[n]q!

=
[2]qLik,q(1− Eq(−t))

t(Eq(2t) + 1)
Eq(xt)(eq(yt)− 1)

=

∞∑
n=0

T
(k)
l,q (x)

tn

[n]q!

∞∑
n=0

yn+1 tn+1

[n+ 1]q!

=

∞∑
n=1

n−1∑
l=0

[
n
l

]
q

yn−lT
(k)
l,q (x)

tn

[n]q!
.

Comparing the coefficients of tn

[n]q !
, we have the above result. In particular, if

y = 1, we have

T(k)
n,q(x, 1)−T(k)

n,q(x) =

n−1∑
l=0

[
n
l

]
q

T
(k)
l,q (x).

□

By the Gaussian binomial coefficients and the q-polylogarithm function, we
derive next theorem that is related with q-tangent polynomials of the second
type.

Theorem 2.11. For n ∈ Z+, k ∈ Z and 0 < q < 1, we have

T(k)
n,q(x) =

n∑
a=0

a∑
l=0

[
n
a

]
q

[
a
l

]
q

q(
n−a+1

2 )

[n− a+ 1]q
B

(k)
l,q Ta−l,q(x).

Proof. Let n ∈ Z+, k ∈ Z and 0 < q < 1. From the definition of q-
polylogarithm function, we obtain

∞∑
n=0

T(k)
n,q(x)

tn

[n]q!
=

Lik,q(1− Eq(−t))

Eq(t)− 1

[2]q(Eq(t)− 1)

t(Eq(2t) + 1)
Eq(xt)

=

∞∑
n=0

B(k)
n,q

tn

[n]q!

∞∑
n=0

Tn,q(x)
tn

[n]q!

∞∑
n=0

q(
n+1
2 )

[n+ 1]q

tn

[n]q!

=

∞∑
n=0

n∑
a=0

a∑
l=0

[
n
a

]
q

[
a
l

]
q

q(
n+1
2 )

[n− a+ 1]q
B

(k)
l,q Ta−l,q(x)

tn

[n]q!
.

Hence, it is equivalent to write by the fully modified q-poly-Bernoulli polynomials
of the second type and the q-tangent polynomials of the second type.
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□

We also can see the relationship that include the the fully modified q-tangent
polynomials of the second type and the modified q-Stirling numbers of second
kind.

Theorem 2.12. Let n ∈ Z+, k ∈ Z, and 0 < q < 1. Then we obtain

T(k)
n,q(x) =

n∑
a=0

a+1∑
l=1

[
n
a

]
q

(−1)l+a+1[l − 1]q!

[l]k−1
q

S∗
q (a+ 1, l)

[a+ 1]q
Tn−a,q(x).

Proof. Let n ∈ Z+ and k ∈ Z. Then we have
∞∑

n=0

T(k)
n,q(x)

tn

n!
=

[2]qLik,q(1− Eq(−t))

t(Eq(2t) + 1)
Eq(xt)

=

∞∑
n=1

n+1∑
l=1

(−1)l+n+l[l]q!

[l]kq [n+ 1]q
S∗
q (n+ 1, l)

tn

[n]q!

∞∑
n=0

Tn,q(x)
tn

[n]q!

=

∞∑
n=0

n∑
a=0

a+1∑
l=1

[
n
a

]
q

(−1)l+a+1[l − 1]q!

[l]k−1
q

S∗
q (a+ 1, l)

[a+ 1]q
Tn−a,q(x)

tn

[n]q!
.

□

The fully modified q-poly tangent polynomials can be indicated by the for-
mula that is related to the modified q-Stirling numbers of second kind, the fully
modified q-Bernoulli numbers of the second type of order l and the fully modified
q-poly tangent numbers of the second type.

Theorem 2.13. For n ∈ Z+, k ∈ Z and 0 < q < 1, we get

T(k)
n,q(x) =

n∑
a=0

a∑
i=0

[
n+ l
a

]
q

[
a
i

]
q[

n+ l
l

]
q

S∗
q (n− a+ l, l)B<l>

i,q (x)T
(k)
a−i,q.

where B<l>
i,q (x) is q-Bernoulli polynomials of second type of order l.

Proof. Let n ∈ Z+, k ∈ Z. Then we obtain

[2]qLik,q(1− Eq(−t))

t(Eq(2t) + 1)
Eq(xt)

=

∞∑
n=0

T(k)
n,q

tn

[n]q!

∞∑
n=0

S∗
q (n+ l, l)

tn

[n]q!

∞∑
n=0

B<l>
n,q (x)

tn

[n]q!

=

∞∑
n=0

n∑
a=0

a∑
i=0

[
n+ l
a

]
q

[
a
i

]
q[

n+ l
l

]
q

S∗
q (n− a+ l, l) B<l>

i,q (x)T
(k)
n−a,q

tn

[n]q!
.
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Comparing the coefficients on the both sides, we get

T(k)
n,q(x) =

n∑
a=0

a∑
i=0

[
n+ l
a

]
q

[
a
i

]
q[

n+ l
l

]
q

S∗
q (n− a+ l, l)B<l>

i,q (x)T
(k)
n−a,q.

□

Theorem 2.14. For n ∈ N, k ∈ Z and 0 < q < 1, the following identity holds

T(k)
n,q(x, 2)−T(k)

n,q(x)

=

n−1∑
r=0

r∑
a=0

a+1∑
l=0

[
n

r + 1

]
q

[
r + 1
a

]
q

(−1)l+a+1[l − 1]q!2
r−a+1

[l]k−1
q [a+ 1]q

× S∗
q (a+ 1, l)Tn−r+1,q(x).

Proof. Let n ∈ Z+, k ∈ Z and 0 < q < 1. Then we have

∞∑
n=0

T(k)
n,q(x, 2)

tn

n!
−

∞∑
n=0

T(k)
n,q(x)

tn

n!

=
[2]qLik,q(1− E(−t))

t(Eq(2t) + 1)
Eq(xt) (eq(2t)− 1)

=

∞∑
n=0

n+1∑
l=1

(−1)n+l+1[l − 1]q!

[l]k−1
q [n+ 1]q

S∗
q (n+ 1, l)

tn

[n]q!

×
∞∑

n=0

∞∑
n=0

2n+1 tn+1

[n+ 1]q!
Tn,q(x)

tn

[n]q!

=

∞∑
n=1

n−1∑
r=0

r∑
a=0

a+1∑
l=0

[
n

r + 1

]
q

[
r + 1
a

]
q

(−1)l+a+1[l − 1]q!

[l]k−1
q [a+ 1]q

× 2r−a+1S∗
q (a+ 1, l)Tn−r−1,q(x)

tn

[n]q!
.

Comparing the coefficient of tn

[n]q !
, for n ∈ N, we get the result as below

T(k)
n,q(x, 2)−T(k)

n,q(x)

=

n−1∑
r=0

r∑
a=0

a+1∑
l=0

[
n

r + 1

]
q

[
r + 1
a

]
q

(−1)l+a+1[l − 1]q!

[l]k−1
q [a+ 1]q

× 2r−a+1S∗
q (a+ 1, l)Tn−r+1,q(x).

□
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3. Zeros of the fully q-poly-tangent polynomials of the second type

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the

zeros of the fully modified q-poly-tangent polynomials of the second typeT
(k)
n,q(x).

The fully modified q-poly-tangent polynomials of the second type T
(k)
n,q(x) can

be determined explicitly. A few of them are

T
(k)
0,q(x) =

[2]q
2

,

T
(k)
1,q(x) = −1

2
− q

2
− q

2(1− q2)
+

q3

2(1− q2)
+

[2]1−k
q

2(1− q2)
−

q2[2]1−k
q

2(1− q2)
+

x

2
+

qx

2
,

T
(k)
2,q(x) = −q − q2 +

q3

2(1− q3)
− q5

2(1− q3)
+

qx2

2
+

q2x2

2
+

q

[
2
1

]
q

2(1− q2)
−

q3
[
2
1

]
q

2(1− q2)

−
[2]1−k

q

[
2
1

]
q

2(1− q2)
+

q2[2]1−k
q

[
2
1

]
q

2(1− q2)
−

qx

[
2
1

]
q

2(1− q2)
+

q3x

[
2
1

]
q

2(1− q2)
+

[2]1−k
q x

[
2
1

]
q

2(1− q2)

−
q2[2]1−k

q x

[
2
1

]
q

2(1− q2)
+

1

2
[2]q! +

1

2
q[2]q! +

[3]1−k
q [2]q!

2(1− q3)
−

q2[3]1−k
q [2]q!

2(1− q3)

− 1

2
x[2]q!−

1

2
qx[2]q!−

q[2]1−k
q [3]q!

(1− q3)([2]q!)2
+

q3[2]1−k
q [3]q!

(1− q3)([2]q!)2
.
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Figure 1. Zeros of T
(k)
n,q(x)
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We investigate the zeros of the fully modified q-poly-tangent polynomials of

the second type T
(k)
n,q(x) by using a computer. We plot the zeros of the fully

modified q-poly-tangent polynomials of the second type T
(k)
n,q(x) for n = 20 and

x ∈ C(Figure 1). In Figure 1(top-left), we choose n = 20, q = 9/10, and k = −2.
In Figure 1(top-right), we choose n = 20, q = 9/10, and k = 1. In Figure
1(bottom-left), we choose n = 20, q = 9/10, and k = 1. In Figure 1(bottom-
right), we choose n = 20, q = 9/10, and k = 2.

Stacks of zeros of T
(k)
n,q(x) for 1 ≤ n ≤ 20 from a 3-D structure are presented

(Figure 2). In Figure 2(left), we choose n = 20, q = 9/10, and k = −2. In Figure
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Figure 2. Stacks of zeros of T
(k)
n,q(x) for 1 ≤ n ≤ 20

2(right), we choose n = 20, q = 9/10, , and k = 2.

Our numerical results for approximate solutions of real zeros of T
(k)
n,q(x) are

displayed (Tables 2, 3, 4).

Table 2. Numbers of real and complex zeros of T
(k)
n,q(x)

k = −2, q = 9/10 k = 2, q = 9/10
degree n real zeros complex zeros real zeros complex zeros

1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 4 0 4 0
5 5 0 5 0
6 4 2 4 2
7 5 2 3 4
8 6 2 4 4
9 7 2 5 4
10 6 4 6 4
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The plot of real zeros of T
(k)
n,,q(x) for 1 ≤ n ≤ 20 structure are presented (Figure

3). In Figure 3(left), we choose n = 20, q = 9/10, and k = −2. In Figure
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Figure 3. Real zeros of T
(k)
n,q(x) for 1 ≤ n ≤ 20

3(right), we choose n = 20, q = 9/10, , and k = 2.
We observe a remarkable regular structure of the real roots of the fully mod-

ified q-poly-tangent polynomials of the second type T
(k)
n,q(x). We also hope to

verify a remarkable regular structure of the real roots of the fully modified q-poly-

tangent polynomials of the second type T
(k)
n,q(x) (Table 1). Next, we calculated

an approximate solution satisfying fully q-poly-tangent polynomials of the sec-

ond type T
(k)
n,q(x) = 0 for x ∈ R. The results are given in Table 3 and Table

4.

Table 3. Approximate solutions of T
(−2)
n,q (x) = 0, q = 9/10

degree n x

1 −2.13632

2 −3.99049, −0.519511

3 −5.8933, −1.54803, 0.29391

4 −7.94479, −2.52723, −0.503691, 0.897817

5 −10.1943, −3.46791, −1.45091, 0.483989, 1.29515

6 −12.6777, −4.38276, −2.45606, −0.383495

7 −15.4276, −5.27475, −3.52244, −1.34303, 0.713521
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Table 4. Approximate solutions of T
(2)
n,q(x) = 0, q = 9/10

degree n x

1 1.19668

2 0.244866, 2.28145

3 −0.513357, 1.30301, 3.21404

4 −1.13991, 0.357342, 2.36829, 4.05951

5 −1.61625, −0.60465, 1.40764, 3.45328, 4.82913

6 0.462563, 2.47063, 4.67171, 5.45367

7 −0.487024, 1.51284, 3.56407

By numerical computations, we will make a series of the following conjectures:

Conjecture 3.1. Prove that T
(k)
n,q(x), x ∈ C, has Im(x) = 0 reflection sym-

metry analytic complex functions. However, T
(k)
n,q(x) has not Re(x) = a reflec-

tion symmetry for a ∈ R.

Using computers, many more values of n have been checked. It still remains
unknown if the conjecture fails or holds for any value n (see Figures 1, 2, 3). We

are able to decide if T
(k)
n,q(x) = 0 has n distinct solutions (see Tables 1, 2, 3).

Conjecture 3.2. Prove that T
(k)
n,q(x) = 0 has n distinct solutions.

As a result of the numerical experiment, the following results can be inferred
(see Table 1).

Conjecture 3.3. For n ≥ 2, prove that

S∗
q (n, n− 1) =

(n− 1)q[n]q
[2]q

, S∗
q (n, 1) = q(

n
2).

Since n is the degree of the polynomial T
(k)
n,q(x), the number of real zeros

R
T

(k)
n,q(x)

lying on the real plane Im(x) = 0 is then R
T

(k)
n,q(x)

= n−C
T

(k)
n,q(x)

, where

C
T

(k)
n,q(x)

denotes complex zeros. See Table 1 for tabulated values of R
T

(k)
n,q(x)

and

C
T

(k)
n,q(x)

. The authors have no doubt that investigations along these lines will

lead to a new approach employing numerical method in the research field of

the fully modified q-poly-tangent polynomials of the second type T
(k)
n,q(x) which

appear in mathematics and physics.

Conflicts of interest : The author declares no conflict of interest.
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6. T. Komatsu, J.L. Ramı́rez, V.F. Sirvent , A (p, q)-Analog of Poly-Euler Polynomials and
Some Related Polynomials, Ukrainian Mathematical Journal 72 (2020), 536–554.

7. T. Mansour, Identities for sums of a q-analogue of polylogarithm functions, Lett. Math.

Phys. 87 (2009), 1-18.
8. C.S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies Theor. Phys. 7

(2013), 447-454.
9. C.S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. App.

Math. & Informatics 32 (2014), 315-322.

10. C.S. Ryoo, On (p, q)-Cauchy polynomials and their zeros, Global Journal of Pure and
Applied Mathematics 12 (2016), 4623-4636.

11. C.S. Ryoo, R.P. Agarwal, Some identities involving q-poly-tangent numbers and polyno-

mials and distribution of their zeros, Advances in Difference Equations 2017:213 (2017),
1-14.

12. P.N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor for-

mulas, arXiv:1309.3934[math.QA].
13. H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, European

J. Combin. 31 (2010), 1689-1705.

14. P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their ap-
plications, Journal of Number Theory 128 (2008), 738-758.

Jung Yoog Kang received M.Sc. and Ph.D. at Hannam University. Her research interests

are complex analysis, quantum calculus, special functions, differential equation, and analytic

number theory.

Department of Mathematics Education, Silla University, Busan, Korea.

e-mail: jykang@silla.ac.kr


