4-TOTAL MEAN CORDIAL LABELING OF ARROW GRAPHS AND SHELL GRAPHS

R. PONRAJ*, S. SUBBULAKSHMI

Abstract

In this paper we investigate the 4-total mean cordial labeling behavior of arrow graphs, shell-Butterfly graph and graphs obtained by joining two copies of shell graphs by a path.

AMS Mathematics Subject Classification : 05C78.
Key words and phrases : Arrow graph, double arrow, shell-butterfly.

1. Introduction

All graphs in this paper are finite, simple and undirected graphs only. The cordial labeling was introduced by Cahit [9]. Subsequently cordial related labeling was studied in $[1,2,4,5,6,7,8,10,11,12,16,17,29,30]$. The notion of k-total mean cordial labeling has been introduced in [20]. The 4 -total mean cordial labeling behavior of several graphs like cycle, complete graph, star, bistar, comb and crown have been studied in $[20,21,22,23,24,25,26,27,28]$. In this paper we investigate the 4 - total mean cordial labeling behavior of arrow graphs, shellbutterfly graph and graphs obtained by joining two copies of shell graphs by a path. Let x be any real number. Then $\lceil x\rceil$ stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary[14] and Gallian[13].

2. preliminaries

Definition 2.1. The graph $P_{m} X P_{n}$ is called the grid.
Let $V\left(P_{m} X P_{n}\right)=\left\{u_{i, j}: 1 \leq i \leq m ; 1 j \leq n\right\}$ and $E\left(P_{m} X P_{n}\right)=\left\{u_{1, j} u_{1, j+1}, u_{2, j} u_{2, j+1}, \cdots, u_{m, j} u_{m, j+1}: 1 \leq j \leq n-1\right\}$
$\cup\left\{u_{i, 1} u_{i+1,1}, u_{i, 2} u_{i+1,2}, \cdots, u_{i, n} u_{i+1, n}: 1 \leq i \leq m-1\right\}$.
Definition 2.2. [3] An arrow graph $A_{m, n}$ with width n and length m ia obtained by joining a vertex v to the vertices $u_{1,1}, u_{2,1}, \cdots, u_{n, 1}$ of $P_{m} X P_{n}$.

[^0]Definition 2.3. [3] A double arrow graph $D A_{m, n}$ with width n and length m ia obtained by joining a vertices u to the vertices $u_{1,1}, u_{2,1}, \cdots, u_{n, 1}$ and a vertex v to the vertices $u_{1, m}, u_{2, m}, \cdots, u_{n, m}$ of $P_{m} X P_{n}$.

Definition 2.4. [15] A shell graph S_{n} is defined as a cycle C_{n} with $n-3$ chords sharing a common end point called the apex. Clearly the shell S_{n} is the fan graph F_{n-1}.
Definition 2.5. [15] A double shell graph $D S_{n}$ is defined to be a collection of edge disjoint shells that have their apex is common.
Definition 2.6. [15] A shell-butterfly graph $S B_{n}$ is defined as a double shell with exactly two pendent edges at the apex.

3. Main results

Theorem 3.1. The graph $A_{n, 2}$ is 4 -total mean cordial for all $n \geq 2$.
Proof. Let $V\left(A_{n, 2}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(A_{n, 2}\right)=\left\{u u_{1}, u v_{1}\right\} \cup$
$\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$.
Clearly, $\left|V\left(A_{n, 2}\right)\right|+\left|E\left(A_{n, 2}\right)\right|=5 n+1$.
Assign the label 0 to the vertex u.
Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Consider the vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. Assign the label 0 to the r vertices $u_{1}, u_{2}, \ldots, u_{r}$. Next assign the label 1 to the r vertices u_{r+1}, $u_{r+2}, \ldots, u_{2 r}$. We now assign the label 2 to the r vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{3 r}$. Now we assign the label 3 to the r vertices $u_{3 r+1}, u_{3 r+2}, \ldots, u_{4 r}$.
Consider the vertices $v_{1}, v_{2}, \ldots, v_{4 r}$. Assign the label 0 to the r vertices v_{1}, v_{2}, \ldots, v_{r}. Then we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \ldots, v_{2 r}$. Now we assign the label 2 to the r vertices $v_{2 r+1}, v_{2 r+2}, \ldots, v_{3 r}$. Finally we assign the label 3 to the r vertices $v_{3 r+1}, v_{3 r+2}, \ldots, v_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in Case 1. Finally we assign the labels 0,2 to the vertices $u_{4 r+1}, v_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. Label the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r+1)$ as in Case 2. Next we assign the labels 1,3 to the vertices $u_{4 r+2}, v_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. In this case, we assign the label for the vertices u_{i}, v_{i} $(1 \leq i \leq 4 r)$ as in Case 1. We now assign the labels $1,1,0,3,3,0$ to the vertices $u_{4 r+1}, u_{4 r+2}, u_{4 r+3}, v_{4 r+1}, v_{4 r+2}, v_{4 r+3}$.

This vertex labeling f is a 4-total mean cordial labeling of $A_{n, 2}$ follows from the Tabel 1

Order of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$5 r+1$	$5 r$	$5 r$	$5 r$
$n=4 r+1$	$5 r+2$	$5 r+1$	$5 r+2$	$5 r+1$
$n=4 r+2$	$5 r+2$	$5 r+3$	$5 r+3$	$5 r+3$
$n=4 r+3$	$5 r+4$	$5 r+4$	$5 r+4$	$5 r+4$

TABLE 1

Case 5. $n=2,3$.
A 4-total mean cordial labeling of $A_{n, 2}$ is given in Tabel 2

Value of n	u	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	v_{3}
2	0	2	0		3	2	
3	0	1	0	0	2	3	3

TABLE 2

Theorem 3.2. The graph $A_{n, 3}$ is a 4-total mean cordial for all $n \geq 2$.
Proof. Let $V\left(A_{n, 3}\right)=\left\{u, u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(A_{n, 3}\right)=\left\{u u_{1}, u v_{1}, u w_{1}\right\}$ $\cup\left\{u_{i} v_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, w_{i} w_{i+1}: 1 \leq i \leq n-1\right\}$.
Obviously $\left.\mid V\left(A_{n, 3}\right)\right)\left|+\left|E\left(A_{n, 3}\right)\right|=8 n+1\right.$.
Assign the label 0 to the vertex u. Now we assign the label 2 to the vertex u_{1}. Next we assign the label 0 to the $n-1$ vertices $u_{2}, u_{3}, \ldots, u_{n}$. We now assign the label 3 to the n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Next we assign the label 0 to the vertex w_{1}. Finally we assign the label 1 to the $n-1$ vertices $w_{2}, w_{3}, \ldots, w_{n}$. Clearly $t_{m f}(0)=t_{m f}(1)=t_{m f}(3)=2 n ; t_{m f}(2)=2 n+1$.

Theorem 3.3. The graph $A_{n, 4}$ is 4 -total mean cordial for all $n \geq 2$.
Proof. Let $V\left(A_{n, 4}\right)=\left\{u, u_{i}, v_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(A_{n, 4}\right)=$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, x_{i} x_{i+1}, y_{i} y_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u u_{1}, u v_{1}, u x_{1}, u y_{1}\right\}$ $\cup\left\{u_{i} v_{i}, v_{i} x_{i}, x_{i} y_{i}: 1 \leq i \leq n\right\}$.
Note that $\left|V\left(A_{n, 4}\right)\right|+\left|E\left(A_{n, 4}\right)\right|=11 n+1$.
Assign the label 0 to the vertex u.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \geq 2$. Assign the label 0 to the $4 r$ vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. Consider the vertices $v_{1}, v_{2}, \ldots, v_{4 r}$. Then we assign the label 2 to the $3 r$ vertices v_{1}, v_{2}, $\ldots, v_{3 r}$. We now assign the label 0 to the r vertices $v_{3 r+1}, v_{3 r+2}, \ldots, v_{4 r}$.
Next we assign the label 3 to the $4 r-2$ vertices $x_{1}, x_{2}, \ldots, x_{4 r-2}$. Now we assign the label 2 to the 2 vertices $x_{4 r-1}, x_{4 r}$. We now assign the label 1 to the $4 r-2$ vertices $y_{1}, y_{2}, \ldots, y_{4 r-2}$. Finally we assign the label 3 to the 2 vertices $y_{4 r-1}, y_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Now we assign the label 0 to the $4 r+1$ vertices u_{1}, u_{2}, $\ldots, u_{4 r+1}$. Next we assign the label 0 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Then we assign the label 2 to the $3 r+1$ vertices $v_{r+1}, v_{r+2}, \ldots, v_{4 r+1}$. Now we assign the label 2 to the vertex x_{1}. We now assign the label 3 to the $4 r$ vertices x_{2}, x_{3}, $\ldots, x_{4 r+1}$. Next we assign the label 3 to the vertex y_{1}. Finally we assign the label 1 to the $4 r$ vertices $y_{2}, y_{3}, \ldots, y_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. Label the vertices $u_{i}, v_{i}, x_{i}, y_{i}(1 \leq i \leq 4 r+1)$ as in Case 2. Next we assign the labels $0,2,3,1$ to the vertices $u_{4 r+2}, v_{4 r+2}, x_{4 r+2}$, $y_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \geq 0$. Assign the label 0 to the $4 r+3$ vertices u_{1}, u_{2}, \ldots, $u_{4 r+3}$. Next we assign the label 0 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. We now assign the label 2 to the $3 r+3$ vertices $v_{r+1}, v_{r+2}, \ldots, v_{4 r+3}$. Now we assign the label 3 to the $4 r+3$ vertices $x_{1}, x_{2}, \ldots, x_{4 r+3}$. Next we assign the label 0 to the vertex y_{1}. Finally we assign the label 1 to the $4 r+2$ vertices $y_{2}, y_{3}, \ldots, y_{4 r+3}$.

This shows that vertex labeling f is a 4-total mean cordial labeling of $A_{n, 4}$ follows from the Tabel 3

Size of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$11 r$	$11 r$	$11 r$	$11 r$
$n=4 r+1$	$11 r+3$	$11 r+3$	$11 r+3$	$11 r+3$
$n=4 r+2$	$11 r+5$	$11 r+6$	$11 r+6$	$11 r+6$
$n=4 r+3$	$11 r+9$	$11 r+8$	$11 r+9$	$11 r+8$

TABLE 3

Case 5. $n=2,3$.
A 4-total mean cordial labeling of $A_{n, 4}$ is given in Tabel 4

n	u	u_{1}	u_{2}	u_{3}	u_{4}	v_{1}	v_{2}	v_{3}	v_{4}	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	y_{4}
2	0	0	0			1	2			3	3			1	3		
4	0	0	0	0	0	2	2	2	0	3	3	3	3	1	1	1	3

TABLE 4

Theorem 3.4. The graph $D A_{n, 2}$ is 4-total mean cordial for all $n \geq 2$.
Proof. Let $V\left(D A_{n, 2}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(D A_{n, 2}\right)=$
$\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u u_{1}, u v_{1}, v u_{n}, v v_{n}\right\}$.
Clearly, $\left|V\left(D A_{n, 2}\right)\right|+\left|E\left(D A_{n, 2}\right)\right|=5 n+4$.
Assign the label 0,1 to the vertices u, v.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \geq 2$. Consider the vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. Assign the label 0 to the r vertices $u_{1}, u_{2}, \ldots, u_{r}$. Next assign the label 1 to the r vertices u_{r+1}, u_{r+2}, $\ldots, u_{2 r}$. We now assign the label 2 to the $r-1$ vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{3 r-1}$. Now we assign the label 3 to the $r+1$ vertices $u_{3 r}, u_{3 r+1}, \ldots, u_{4 r}$. Consider the vertices $v_{1}, v_{2}, \ldots, v_{4 r}$. Assign the label 0 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Then we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \ldots, v_{2 r}$. Now we assign the label 2 to the $r+1$ vertices $v_{2 r+1}, v_{2 r+2}, \ldots, v_{3 r+1}$. Finally we assign the label 3 to the $r-1$ vertices $v_{3 r+2}, v_{3 r+3}, \ldots, v_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Assign the label 0 to the r vertices $u_{1}, u_{2}, \ldots, u_{r}$. Next assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2 r}$. We now assign the label 2 to the r vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{3 r}$. Now we assign the label 3 to the r vertices $u_{3 r+1}, u_{3 r+2}, \ldots, u_{4 r}$. Next we assign the label 0 to the vertex $u_{4 r+1}$. We now assign the label 0 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Then we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \ldots, v_{2 r}$. Now we assign the label 2 to the r vertices $v_{2 r+1}, v_{2 r+2}, \ldots, v_{3 r}$. Next we assign the label 3 to the r vertices $v_{3 r+1}, v_{3 r+2}, \ldots, v_{4 r}$. Finally we assign the label 3 to the vertex $v_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. Label the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r+1)$ as in Case 2. Now we assign the labels 0,2 to the vertices $u_{4 r+2}, v_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. As in case 2 , we assign the label to the vertices u_{i}, v_{i} $(1 \leq i \leq 4 r)$. Finally we assign the labels $1,0,0,3,3,2$ to the vertices $u_{4 r+1}$,
$u_{4 r+2}, u_{4 r+3}, v_{4 r+1}, v_{4 r+2}, v_{4 r+3}$.
This vertex labeling f is a 4 -total mean cordial labeling of $D A_{n, 2}$ follows from the Tabel 5

n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$5 r+1$	$5 r+1$	$5 r+1$	$5 r+1$
$n=4 r+1$	$5 r+2$	$5 r+2$	$5 r+3$	$5 r+2$
$n=4 r+2$	$5 r+4$	$5 r+3$	$5 r+4$	$5 r+3$
$n=4 r+3$	$5 r+4$	$5 r+5$	$5 r+5$	$5 r+5$

Table 5

Case 5. $n=2,3$.
A 4-total mean cordial labeling of $D A_{n, 2}$ is given in Tabel 6

Value of n	u	v	u_{1}	u_{2}	u_{3}	u_{4}	v_{1}	v_{2}	v_{3}	v_{4}
2	0	1	0	1			3	3		
3	0	1	2	0	0		3	2	3	
4	0	1	0	1	3	2	0	1	2	3

TABLE 6

Theorem 3.5. The graph $D A_{n, 3}$ is a 4 -total mean cordial for all $n \geq 2$.
Proof. Let $V\left(D A_{n, 3}\right)=\left\{u, v, u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and Let $E\left(D A_{n, 3}\right)=$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, w_{i} w_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\} \cup$ $\left\{u u_{1}, u v_{1}, u w_{1}, v u_{n}, v v_{n}, v w_{n}\right\}$. Note that $\left|V\left(D A_{n, 3}\right)\right|+\left|E\left(D A_{n, 3}\right)\right|=8 n+5$.

Assign the labels 0,2 to the vertices u, v respectively. Next we assign the label 0 to the n vertices $u_{1}, u_{2}, \ldots, u_{n}$. We now assign the label 2 to the vertex v_{1}. Now we assign the label 3 to the $n-1$ vertices $v_{2}, v_{3}, \ldots, v_{n}$. Then we assign the label 1 to the $n-1$ vertices $w_{1}, w_{2}, \ldots, w_{n-1}$. Finally we assign the label 3 to the vertex w_{n}.
Obviously $t_{m f}(0)=t_{m f}(1)=t_{m f}(2)=2 n+1 ; t_{m f}(3)=2 n+2$.

Theorem 3.6. The graph $D A_{n, 4}$ is 4 -total mean cordial for all $n \geq 2$.
Proof. Let $V\left(D A_{n, 4}\right)=\left\{u, v, u_{i}, v_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(D A_{n, 4}\right)=$ $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, x_{i} x_{i+1}, y_{i} y_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, v_{i} x_{i}, x_{i} y_{i}: 1 \leq i \leq n\right\}$ $\cup\left\{u u_{1}, u v_{1}, u x_{1}, u y_{1}, v u_{n}, v v_{n}, v x_{n}, v y_{n}\right\}$.

Clearly $\left|V\left(D A_{n, 4}\right)\right|+\left|E\left(D A_{n, 4}\right)\right|=11 n+6$.
Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Assign the labels 0 and 3 to the vertices u and v respectively. Now we assign the label 0 to the $4 r$ vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. Next we assign the label 0 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. We now assign the label 2 to the $3 r$ vertices $v_{r+1}, v_{r+2}, \ldots, v_{4 r}$. Next we assign the label 3 to the $4 r$ vertices x_{1}, x_{2}, $\ldots, x_{4 r}$. Finally we assign the label 1 to the $4 r$ vertices $y_{1}, y_{2}, \ldots, y_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Now we assign the labels 0 and 3 to the vertices u and v respectively. Next we assign the label 0 to the $4 r$ vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. We now assign the label 1 to the vertex $u_{4 r+1}$. Now we assign the label 0 to the $r+1$ vertices $v_{1}, v_{2}, \ldots, v_{r+1}$. Next we assign the label 2 to the $3 r$ vertices $v_{r+2}, v_{r+3}, \ldots, v_{4 r+1}$. Then we assign the label 3 to the $4 r+1$ vertices x_{1}, $x_{2}, \ldots, x_{4 r+1}$. Finally we assign the label 1 to the $4 r+1$ vertices $y_{1}, y_{2}, \ldots, y_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. We now assign the labels 0 and 1 to the vertices u and v respectively. Now we assign the label 0 to the $4 r+2$ vertices $u_{1}, u_{2}, \ldots, u_{4 r+2}$. Next we assign the label 2 to the $3 r+1$ vertices $v_{1}, v_{2}, \ldots, v_{3 r+1}$. We now assign the label 0 to the $r+1$ vertices $v_{3 r+2}, v_{3 r+3}, \ldots, v_{4 r+2}$. Then we assign the label 3 to the $4 r$ vertices $x_{1}, x_{2}, \ldots, x_{4 r}$. Now we assign the labels 3 and 2 to the vertices $x_{4 r+1}$ and $x_{4 r+2}$. We now assign the label 1 to the $4 r$ vertices y_{1}, $y_{2}, \ldots, y_{4 r}$. Finally we assign the labels 2 and 3 to the vertices $y_{4 r+1}$ and $y_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \geq 0$. Assign the labels 0 and 3 to the vertices u ans v respectively. Then we assign the label 0 to the $4 r+3$ vertices $u_{1}, u_{2}, \ldots, u_{4 r+3}$. Now we assign the label 0 to the $r+1$ vertices $v_{1}, v_{2}, \ldots, v_{r+1}$. We now assign the label 2 to the $3 r+2$ vertices $v_{r+2}, v_{r+3}, \ldots, v_{4 r+3}$. Next we assign the label 3 to the $4 r+3$ vertices $x_{1}, x_{2}, \ldots, x_{4 r+3}$. Finally we assign the label 1 to the $4 r+3$ vertices $y_{1}, y_{2}, \ldots, y_{4 r+3}$.

Thus shows that this vertex labeling f is a 4-total mean cordial labeling of $D A_{n, 4}$ follows from the Tabel 7

Case 5. $n=2$.
A 4 -total mean cordial labeling of $D A_{n, 4}$ is given in Tabel 8

Size of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$11 r+1$	$11 r+1$	$11 r+2$	$11 r+2$
$n=4 r+1$	$11 r+4$	$11 r+4$	$11 r+5$	$11 r+4$
$n=4 r+2$	$11 r+7$	$11 r+7$	$11 r+7$	$11 r+7$
$n=4 r+3$	$11 r+10$	$11 r+9$	$11 r+10$	$11 r+10$

TABLE 7

n	u	v	u_{1}	u_{2}	v_{1}	v_{2}	x_{1}	x_{2}	y_{1}	y_{2}
2	2	3	0	3	0	3	0	1	0	2

Table 8

Theorem 3.7. All shell-Butterfly graphs $S B_{n}$ with shell order $n(n \geq 3)$ is 4 -total mean cordial.

Proof. Let $S B_{n}$ be a shell Butterfly graph. Let $V(V)=\left\{u, v, w, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E(V)=\left\{u x_{i}, u y_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}, y_{i} y_{i+1}: 1 \leq i \leq n-1\right\} \cup\{u v, u w\}$. Obviously $|V(V)|+|E(V)|=6 n+3$.

Assign the labels $1,1,2$ to the vertices u, v, w respectively.
Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Assign the label 0 to the $3 r+1$ vertices $x_{1}, x_{2}, \ldots, x_{3 r+1}$. Next we assign the label 1 to the $r-1$ vertices $x_{3 r+2}, x_{3 r+2}, \ldots, x_{4 r}$. Now we assign the label 3 to the $3 r$ vertices $y_{1}, y_{2}, \ldots, y_{3 r}$. We now assign the label 2 to the r vertices $y_{3 r+1}, y_{3 r+2}, \ldots, y_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Now we assign the label 0 to the $3 r+2$ vertices x_{1}, x_{2}, $\ldots, x_{3 r+2}$. Then we assign the label 1 to the $r-1$ vertices $x_{3 r+3}, x_{3 r+4}, \ldots$, $x_{4 r+1}$. We now assign the label 3 to the $3 r+1$ vertices $y_{1}, y_{2}, \ldots, y_{3 r+1}$. Next we assign the label 2 to the r vertices $y_{3 r+2}, y_{3 r+3}, \ldots, y_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. We now assign the label 0 to the $3 r+2$ vertices x_{1}, x_{2}, $\ldots, x_{3 r+2}$. Then we assign the label 1 to the $r-1$ vertices $x_{3 r+3}, x_{3 r+4}, \ldots$, $x_{4 r+1}$. Next we assign the label 2 to the vertex $u_{4 r+2}$. Now we assign the label 3 to the $3 r+2$ vertices $y_{1}, y_{2}, \ldots, y_{3 r+2}$. we now assign the label 0 to the vertex $y_{3 r+3}$. Finally we assign the label 2 to the $r-1$ vertices $y_{3 r+4}, y_{3 r+5}, \ldots, y_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, \in \mathbb{N}$. Assign the label 0 to the $3 r+3$ vertices $x_{1}, x_{2}, \ldots, x_{3 r+3}$. Next we assign the label 1 to the $r-1$ vertices $x_{3 r+4}, x_{3 r+5}, \ldots, x_{4 r+2}$. We
now assign the label 2 to the vertex $x_{4 r+3}$. Now we assign the label 3 to the $3 r+3$ vertices $y_{1}, y_{2}, \ldots, y_{3 r+3}$. Then we assign the label 0 to the vertex $y_{3 r+4}$. Finally we assign the label 2 to the $r-1$ vertices $y_{3 r+5}, y_{3 r+6}, \ldots, y_{4 r+3}$.

This shows that f is a 4 -total mean cordial labeling follows from the Table 9.

Order of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$6 r+1$	$6 r+1$	$6 r+1$	$6 r$
$n=4 r+1$	$6 r+3$	$6 r+2$	$6 r+2$	$6 r+2$
$n=4 r+2$	$6 r+4$	$6 r+4$	$6 r+4$	$6 r+3$
$n=4 r+3$	$6 r+6$	$6 r+5$	$6 r+5$	$6 r+5$

TABLE 9

Example 3.8. A 4 - total mean cordial labeling of $S B_{6}$ is given in figure 1 .

Figure 1. $S B_{6}$

Theorem 3.9. The graph obtained by joining two copies of shell graph by a path of arbitrary length is 4 -total mean cordial for all $n \geq 3$.
Proof. Let G be a graph obtained by joining two copies of shell graph by a path of length. Let $V(G)=\left\{u, v, u_{i}, x_{i}, y_{i}: 1 \leq i \leq n, u=u_{1} ; v=u_{n}\right\}$ and $E(G)=\left\{u x_{i}, v y_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}, y_{i} y_{i+1}, u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$.
Obviously $|V(G)|+|E(G)|=8 n-3$.
Assign the label 3 to the n vertices $u_{1}, u_{2}, \ldots, u_{n}$. We now assign the label 0 to the n vertices $x_{1}, x_{2}, \ldots, x_{n}$. Finally we assign the label 1 to the n vertices $y_{1}, y_{2}, \ldots, y_{n}$.
Clearly $t_{m f}(0)=t_{m f}(1)=t_{m f}(3)=2 n-1 ; t_{m f}(2)=2 n$.

4. conclusion

Mean cordial labeling was defined in [19]. The total mean cordial labeling of graphs was introdced in [18]. Motivated on these two concepts, we have introduced k - total mean cordial labeling of graphs. In this paper we investigate the 4 -total mean cordial labeling behaviour of arrow graphs, shell butterfly and two copies of shell joining by a path. Presently, it is difficult to investigate the 4 -total mean cordial labeling behaviour of olive tree,parachutes and Subdivided the rim of whell graphs. The 4-total mean cordial labeling behaviour of slanting ladder, mongolial tents, friendship graph, flower snark graph are open problem for future research work.

Conflicts of interest : There is no conflicts of interest.
Data availability : Not applicable
Acknowledgments : The authors thank the Referee for their valuable suggestions towards the improvement of the paper.

References

1. M. Andar, S. Boxwala, and N. Limaye, Cordial labelings of some wheel related graphs, J. Combin. Math. Combin. Comput. 41 (2002), 203-208.
2. M. Andar, S. Boxwala, and N. Limaye, A note on cordial labelings of multiple shells, Trends Math. (2002), 77-80.
3. R. Avudainayaki, B. Selvam, E_{3}-cordial labelings and total 3-sum cordial labeling for the extended duplicate graph of arrow graph, International Journal of Engineering, Science and Mathematics 7 (2018), 50-61.
4. M.V. Bapat, Some complete-graph related families of product cordial (pc) graphs, Aryabhatta J. Math. Informatics 09 (2017), 133-140.
5. M.V. Bapat, Product cordial labeling of some fusion graphs, Internat. J. Math.Trends and Tech. 50 (2017).
6. J. Baskar Babujee and L. Shobana, Prime cordial labelings, Int. Review on Pure and Appl. Math. 5 (2009), 277-282.
7. J. Baskar Babujee and L. Shobana, Prime and prime cordial labeling for some special graphs, Int. J. Contemp. Math. Sciences 5 (2010), 2347-2356.
8. M.I. Bosmia and K.K. Kanani, Divisor cordial labeling in the context of graph operations on bistar, Global J. Pure and Appl. Math. 12 (2016), 2605-2618.
9. I. Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars Combin. 23 (1987), 201-207.
10. U. Deshmukh and V.Y. Shaikh, Mean cordial labelling of some star-related graphs, Internat. J. Math. Combin. 3 (2016), 146-157.
11. J. Devaraj, On edge-cordial graphs, Graph Theory Notes of New York, XLVII, (2004), 14-18.
12. A.T. Diab, Study of some problems of cordial graphs, Ars Combin. 92 (2009), 255-261.
13. J.A. Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics 19 (2016), \#Ds6.
14. Harary, Graph theory, Addision wesley, New Delhi, 1969.
15. J. Jeba Jesintha, K. Ezhilarsi Hilda, ρ^{*}-Labelingof pathsand shell butterfly graphs, International Journal of pure and Applied Mathematics 101 (2015), 645-653.
16. P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of one-point union of n copies of a graph, Opuscula Math. 34 (2014), 115-133.
17. P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of some graphs, J. Algorithms Comput. 46 (2015), 1-8.
18. R. Ponraj, S. Sathish Narayanan, A.M.S. Ramasamy, Total Mean cordial labeling of graphs, International J. Math. Combin. 4 (2014), 56-68.
19. R. Ponraj, M. Sivakumar, M. Sundaram, Mean cordial labeling of graphs, Open Journal of Discreate mathematics 2 (2012), 145-148.
20. R. Ponraj, S. Subbulakshmi, S. Somasundaram, k-total mean cordial graphs, J. Math. Comput. Sci. 10 (2020), 1697-1711.
21. R. Ponraj, S. Subbulakshmi, S. Somasundaram, 4-total mean cordial graphs derived from paths, J. Appl and Pure Math. 2 (2020), 319-329.
22. R. Ponraj, S. Subbulakshmi, S. Somasundaram, 4-total mean cordial labeling in subdivision graphs, Journal of Algorithms and Computation 52 (2020), 1-11.
23. R. Ponraj, S. Subbulakshmi, S. Somasundaram, Some 4-total mean cordial graphs derived from wheel, J. Math. Comput. Sci. 11 (2021), 467-476.
24. R. Ponraj, S. Subbulakshmi, S. Somasundaram, 4-total mean cordial graphs with star and bistar, Turkish Journal of Computer and Mathematics Education 12 (2021), 951-956.
25. R. Ponraj, S. Subbulakshmi, S. Somasundaram, On 4-total mean cordial graphs, J. Appl. Math and Informatics 39 (2021), 497-506.
26. R. Ponraj, S. Subbulakshmi, S. Somasundaram, 4-total mean cordial labeling of special graphs, Journal of Algorithms and Computation 53 (2021), 13-22.
27. R. Ponraj, S. Subbulakshmi, S. Somasundaram, 4-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2, n}$, Journal of Algorithms and Computation 54 (2022), 35-46.
28. R. Ponraj, S. Subbulakshmi, S. Somasundaram, 4-total mean cordial labeling of some graphs derived from H-graph and star, International J. Math. Combin. 3 (2022), 99-106.
29. S.K. Vaidya and N.B. Vyas, E-cordial labeling for Cartesian product of some graphs, Studies Math. Sci. 3 (2011), 11-15.
30. M.Z. Youssef, On Ek-cordial labeling, Ars Combin. 104 (2012), 271-279.
R. Ponraj did his Ph.D. in Manonmaniam Sundaranar University, Tirunelveli, India. He has guided 9 Ph.D. scholars and published around 170 research papers in reputed journals. He is an authour of eight books for undergraduate students. His research interest in Graph Theory. He is currently an Associate Professor at Sri ParamakalyaniCollege, Alwarkurichi, India.

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India.
e-mail: ponrajmaths@gmail.com
S. Subbulakshmi did her M.Phil degree at Manonmaniam Sundaranar University, Tirunelveli, India. She is currently a research scholar in Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli. Her research interest is in Graph Theory. She has Published four papers in journals.
Research Scholar, Register number: 19124012092011, Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.
e-mail: ssubbulakshmis@gmail.com

[^0]: Received June 11, 2023. Revised August 26, 2023. Accepted September 14, 2023. * Corresponding author.
 (C) 2023 KSCAM .

