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4-TOTAL MEAN CORDIAL LABELING OF ARROW GRAPHS

AND SHELL GRAPHS
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Abstract. In this paper we investigate the 4-total mean cordial labeling
behavior of arrow graphs, shell-Butterfly graph and graphs obtained by

joining two copies of shell graphs by a path.
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1. Introduction

All graphs in this paper are finite, simple and undirected graphs only. The cordial
labeling was introduced by Cahit [9]. Subsequently cordial related labeling was
studied in [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 29, 30]. The notion of k-total
mean cordial labeling has been introduced in [20]. The 4-total mean cordial
labeling behavior of several graphs like cycle, complete graph, star, bistar, comb
and crown have been studied in [20, 21, 22, 23, 24, 25, 26, 27, 28]. In this paper
we investigate the 4- total mean cordial labeling behavior of arrow graphs, shell-
butterfly graph and graphs obtained by joining two copies of shell graphs by
a path. Let x be any real number. Then ⌈x⌉ stands for the smallest integer
greater than or equal to x. Terms are not defined here follow from Harary[14]
and Gallian[13].

2. preliminaries

Definition 2.1. The graph PmXPn is called the grid.
Let V (PmXPn) = {ui,j : 1 ≤ i ≤ m; 1j ≤ n} and
E (PmXPn) = {u1,ju1,j+1, u2,ju2,j+1, · · · , um,jum,j+1 : 1 ≤ j ≤ n− 1}
∪ {ui,1ui+1,1, ui,2ui+1,2, · · · , ui,nui+1,n : 1 ≤ i ≤ m− 1}.

Definition 2.2. [3] An arrow graph Am,n with width n and lengthm ia obtained
by joining a vertex v to the vertices u1,1, u2,1, · · · , un,1 of PmXPn.

Received June 11, 2023. Revised August 26, 2023. Accepted September 14, 2023.
∗Corresponding author.

© 2023 KSCAM.

363



364 R. Ponraj, S.Subbulakshmi

Definition 2.3. [3] A double arrow graph DAm,n with width n and length m ia
obtained by joining a vertices u to the vertices u1,1, u2,1, · · · , un,1 and a vertex
v to the vertices u1,m, u2,m, · · · , un,m of PmXPn.

Definition 2.4. [15] A shell graph Sn is defined as a cycle Cn with n−3 chords
sharing a common end point called the apex. Clearly the shell Sn is the fan
graph Fn−1.

Definition 2.5. [15] A double shell graph DSn is defined to be a collection of
edge disjoint shells that have their apex is common.

Definition 2.6. [15] A shell-butterfly graph SBnis defined as a double shell
with exactly two pendent edges at the apex.

3. Main results

Theorem 3.1. The graph An,2 is 4-total mean cordial for all n ≥ 2.

Proof. Let V (An,2) = {u, ui, vi : 1 ≤ i ≤ n} and E (An,2) = {uu1, uv1} ∪
{uiui+1, vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi : 1 ≤ i ≤ n}.
Clearly, |V (An,2)|+ |E (An,2)| = 5n+ 1.

Assign the label 0 to the vertex u.

Case 1. n ≡ 0 (mod 4).
Let n = 4r, r ∈ N. Consider the vertices u1, u2, . . ., u4r. Assign the label 0
to the r vertices u1, u2, . . ., ur. Next assign the label 1 to the r vertices ur+1,
ur+2, . . ., u2r. We now assign the label 2 to the r vertices u2r+1, u2r+2, . . ., u3r.
Now we assign the label 3 to the r vertices u3r+1, u3r+2, . . ., u4r.
Consider the vertices v1, v2, . . ., v4r. Assign the label 0 to the r vertices v1, v2,
. . ., vr. Then we assign the label 1 to the r vertices vr+1, vr+2, . . ., v2r. Now we
assign the label 2 to the r vertices v2r+1, v2r+2, . . ., v3r. Finally we assign the
label 3 to the r vertices v3r+1, v3r+2, . . ., v4r.

Case 2. n ≡ 1 (mod 4).
Let n = 4r + 1, r ∈ N. Assign the label to the vertices ui, vi (1 ≤ i ≤ 4r) as in
Case 1. Finally we assign the labels 0, 2 to the vertices u4r+1, v4r+1.

Case 3. n ≡ 2 (mod 4).
Let n = 4r + 2, r ∈ N. Label the vertices ui, vi (1 ≤ i ≤ 4r + 1) as in Case 2.
Next we assign the labels 1, 3 to the vertices u4r+2, v4r+2.

Case 4. n ≡ 3 (mod 4).
Let n = 4r + 3, r ∈ N. In this case, we assign the label for the vertices ui, vi
(1 ≤ i ≤ 4r) as in Case 1. We now assign the labels 1, 1, 0, 3, 3, 0 to the vertices
u4r+1, u4r+2, u4r+3, v4r+1, v4r+2, v4r+3.
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This vertex labeling f is a 4-total mean cordial labeling of An,2 follows from
the Tabel 1

Order of n tmf (0) tmf (1) tmf (2) tmf (3)
n = 4r 5r + 1 5r 5r 5r

n = 4r + 1 5r + 2 5r + 1 5r + 2 5r + 1
n = 4r + 2 5r + 2 5r + 3 5r + 3 5r + 3
n = 4r + 3 5r + 4 5r + 4 5r + 4 5r + 4

Table 1

Case 5. n = 2, 3.
A 4-total mean cordial labeling of An,2 is given in Tabel 2

Value of n u u1 u2 u3 v1 v2 v3
2 0 2 0 3 2
3 0 1 0 0 2 3 3

Table 2

□

Theorem 3.2. The graph An,3 is a 4-total mean cordial for all n ≥ 2.

Proof. Let V (An,3) = {u, ui, vi, wi : 1 ≤ i ≤ n} and E (An,3) = {uu1, uv1, uw1}
∪ {uivi, viwi : 1 ≤ i ≤ n} ∪ {uiui+1, vivi+1, wiwi+1 : 1 ≤ i ≤ n− 1} .
Obviously |V (An,3))|+ |E (An,3)| = 8n+ 1.

Assign the label 0 to the vertex u. Now we assign the label 2 to the vertex
u1. Next we assign the label 0 to the n − 1 vertices u2, u3, . . ., un. We now
assign the label 3 to the n vertices v1, v2, . . ., vn. Next we assign the label 0 to
the vertex w1. Finally we assign the label 1 to the n−1 vertices w2, w3, . . ., wn.
Clearly tmf (0) = tmf (1) = tmf (3) = 2n; tmf (2) = 2n+ 1.

□

Theorem 3.3. The graph An,4 is 4-total mean cordial for all n ≥ 2.

Proof. Let V (An,4) = {u, ui, vi, xi, yi : 1 ≤ i ≤ n} and E (An,4) =
{uiui+1, vivi+1, xixi+1, yiyi+1 : 1 ≤ i ≤ n− 1} ∪ {uu1, uv1, ux1, uy1}
∪ {uivi, vixi, xiyi : 1 ≤ i ≤ n}.
Note that |V (An,4)|+ |E (An,4)| = 11n+ 1.

Assign the label 0 to the vertex u.
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Case 1. n ≡ 0 (mod 4).
Let n = 4r, r ≥ 2. Assign the label 0 to the 4r vertices u1, u2, . . ., u4r. Consider
the vertices v1, v2, . . ., v4r. Then we assign the label 2 to the 3r vertices v1, v2,
. . ., v3r. We now assign the label 0 to the r vertices v3r+1, v3r+2, . . ., v4r.
Next we assign the label 3 to the 4r − 2 vertices x1, x2, . . ., x4r−2. Now we
assign the label 2 to the 2 vertices x4r−1, x4r. We now assign the label 1 to the
4r − 2 vertices y1, y2, . . ., y4r−2. Finally we assign the label 3 to the 2 vertices
y4r−1, y4r.

Case 2. n ≡ 1 (mod 4).
Let n = 4r + 1, r ∈ N. Now we assign the label 0 to the 4r + 1 vertices u1, u2,
. . ., u4r+1. Next we assign the label 0 to the r vertices v1, v2, . . ., vr. Then we
assign the label 2 to the 3r + 1 vertices vr+1, vr+2, . . ., v4r+1. Now we assign
the label 2 to the vertex x1. We now assign the label 3 to the 4r vertices x2, x3,
. . ., x4r+1. Next we assign the label 3 to the vertex y1. Finally we assign the
label 1 to the 4r vertices y2, y3, . . ., y4r+1.

Case 3. n ≡ 2 (mod 4).
Let n = 4r + 2, r ∈ N. Label the vertices ui, vi, xi, yi (1 ≤ i ≤ 4r + 1) as in
Case 2. Next we assign the labels 0, 2, 3, 1 to the vertices u4r+2, v4r+2, x4r+2,
y4r+2.

Case 4. n ≡ 3 (mod 4).
Let n = 4r + 3, r ≥ 0. Assign the label 0 to the 4r + 3 vertices u1, u2, . . .,
u4r+3. Next we assign the label 0 to the r vertices v1, v2, . . ., vr. We now
assign the label 2 to the 3r + 3 vertices vr+1, vr+2, . . ., v4r+3. Now we assign
the label 3 to the 4r+3 vertices x1, x2, . . ., x4r+3. Next we assign the label 0 to
the vertex y1. Finally we assign the label 1 to the 4r+2 vertices y2, y3, . . ., y4r+3.

This shows that vertex labeling f is a 4-total mean cordial labeling of An,4

follows from the Tabel 3

Size of n tmf (0) tmf (1) tmf (2) tmf (3)
n = 4r 11r 11r 11r 11r

n = 4r + 1 11r + 3 11r + 3 11r + 3 11r + 3
n = 4r + 2 11r + 5 11r + 6 11r + 6 11r + 6
n = 4r + 3 11r + 9 11r + 8 11r + 9 11r + 8

Table 3

Case 5. n = 2, 3.
A 4-total mean cordial labeling of An,4 is given in Tabel 4
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n u u1 u2 u3 u4 v1 v2 v3 v4 x1 x2 x3 x4 y1 y2 y3 y4
2 0 0 0 1 2 3 3 1 3
4 0 0 0 0 0 2 2 2 0 3 3 3 3 1 1 1 3

Table 4

□

Theorem 3.4. The graph DAn,2 is 4-total mean cordial for all n ≥ 2.

Proof. Let V (DAn,2) = {u, v, ui, vi : 1 ≤ i ≤ n} and E (DAn,2) =
{uivi : 1 ≤ i ≤ n} ∪ {uiui+1, vivi+1 : 1 ≤ i ≤ n− 1} ∪ {uu1, uv1, vun, vvn} .
Clearly, |V (DAn,2)|+ |E (DAn,2)| = 5n+ 4.

Assign the label 0, 1 to the vertices u, v.

Case 1. n ≡ 0 (mod 4).
Let n = 4r, r ≥ 2. Consider the vertices u1, u2, . . ., u4r. Assign the label 0 to
the r vertices u1, u2, . . ., ur. Next assign the label 1 to the r vertices ur+1, ur+2,
. . ., u2r. We now assign the label 2 to the r− 1 vertices u2r+1, u2r+2, . . ., u3r−1.
Now we assign the label 3 to the r+1 vertices u3r, u3r+1, . . ., u4r. Consider the
vertices v1, v2, . . ., v4r. Assign the label 0 to the r vertices v1, v2, . . ., vr. Then
we assign the label 1 to the r vertices vr+1, vr+2, . . ., v2r. Now we assign the
label 2 to the r + 1 vertices v2r+1, v2r+2, . . ., v3r+1. Finally we assign the label
3 to the r − 1 vertices v3r+2, v3r+3, . . ., v4r.

Case 2. n ≡ 1 (mod 4).
Let n = 4r + 1, r ∈ N. Assign the label 0 to the r vertices u1, u2, . . ., ur.
Next assign the label 1 to the r vertices ur+1, ur+2, . . ., u2r. We now assign
the label 2 to the r vertices u2r+1, u2r+2, . . ., u3r. Now we assign the label
3 to the r vertices u3r+1, u3r+2, . . ., u4r. Next we assign the label 0 to the
vertex u4r+1. We now assign the label 0 to the r vertices v1, v2, . . ., vr. Then
we assign the label 1 to the r vertices vr+1, vr+2, . . ., v2r. Now we assign the
label 2 to the r vertices v2r+1, v2r+2, . . ., v3r. Next we assign the label 3 to the
r vertices v3r+1, v3r+2, . . ., v4r. Finally we assign the label 3 to the vertex v4r+1.

Case 3. n ≡ 2 (mod 4).
Let n = 4r + 2, r ∈ N. Label the vertices ui, vi (1 ≤ i ≤ 4r + 1) as in Case 2.
Now we assign the labels 0, 2 to the vertices u4r+2, v4r+2.

Case 4. n ≡ 3 (mod 4).
Let n = 4r + 3, r ∈ N. As in case 2, we assign the label to the vertices ui, vi
(1 ≤ i ≤ 4r). Finally we assign the labels 1, 0, 0, 3, 3, 2 to the vertices u4r+1,
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u4r+2, u4r+3, v4r+1, v4r+2, v4r+3.

This vertex labeling f is a 4-total mean cordial labeling of DAn,2 follows from
the Tabel 5

n tmf (0) tmf (1) tmf (2) tmf (3)
n = 4r 5r + 1 5r + 1 5r + 1 5r + 1

n = 4r + 1 5r + 2 5r + 2 5r + 3 5r + 2
n = 4r + 2 5r + 4 5r + 3 5r + 4 5r + 3
n = 4r + 3 5r + 4 5r + 5 5r + 5 5r + 5

Table 5

Case 5. n = 2, 3.
A 4-total mean cordial labeling of DAn,2 is given in Tabel 6

Value of n u v u1 u2 u3 u4 v1 v2 v3 v4
2 0 1 0 1 3 3
3 0 1 2 0 0 3 2 3
4 0 1 0 1 3 2 0 1 2 3

Table 6

□

Theorem 3.5. The graph DAn,3 is a 4-total mean cordial for all n ≥ 2.

Proof. Let V (DAn,3) = {u, v, ui, vi, wi : 1 ≤ i ≤ n} and Let E (DAn,3) =
{uiui+1, vivi+1, wiwi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi, viwi : 1 ≤ i ≤ n} ∪
{uu1, uv1, uw1, vun, vvn, vwn}. Note that |V (DAn,3)|+ |E (DAn,3)| = 8n+ 5.

Assign the labels 0, 2 to the vertices u, v respectively. Next we assign the
label 0 to the n vertices u1, u2, . . ., un. We now assign the label 2 to the vertex
v1. Now we assign the label 3 to the n − 1 vertices v2, v3, . . ., vn. Then we
assign the label 1 to the n− 1 vertices w1, w2, . . ., wn−1. Finally we assign the
label 3 to the vertex wn.
Obviously tmf (0) = tmf (1) = tmf (2) = 2n+ 1; tmf (3) = 2n+ 2.

□

Theorem 3.6. The graph DAn,4 is 4-total mean cordial for all n ≥ 2.

Proof. Let V (DAn,4) = {u, v, ui, vi, xi, yi : 1 ≤ i ≤ n} and E (DAn,4) =
{uiui+1, vivi+1, xixi+1, yiyi+1 : 1 ≤ i ≤ n− 1} ∪ {uivi, vixi, xiyi : 1 ≤ i ≤ n}
∪ {uu1, uv1, ux1, uy1, vun, vvn, vxn, vyn}.
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Clearly |V (DAn,4)|+ |E (DAn,4)| = 11n+ 6.

Case 1. n ≡ 0 (mod 4).
Let n = 4r, r ∈ N. Assign the labels 0 and 3 to the vertices u and v respectively.
Now we assign the label 0 to the 4r vertices u1, u2, . . ., u4r. Next we assign
the label 0 to the r vertices v1, v2, . . ., vr. We now assign the label 2 to the 3r
vertices vr+1, vr+2, . . ., v4r. Next we assign the label 3 to the 4r vertices x1, x2,
. . ., x4r. Finally we assign the label 1 to the 4r vertices y1, y2, . . ., y4r.

Case 2. n ≡ 1 (mod 4).
Let n = 4r + 1, r ∈ N. Now we assign the labels 0 and 3 to the vertices u and
v respectively. Next we assign the label 0 to the 4r vertices u1, u2, . . ., u4r.
We now assign the label 1 to the vertex u4r+1. Now we assign the label 0 to
the r + 1 vertices v1, v2, . . ., vr+1. Next we assign the label 2 to the 3r ver-
tices vr+2, vr+3, . . ., v4r+1. Then we assign the label 3 to the 4r+1 vertices x1,
x2, . . ., x4r+1. Finally we assign the label 1 to the 4r+1 vertices y1, y2, . . ., y4r+1.

Case 3. n ≡ 2 (mod 4).
Let n = 4r+2, r ∈ N. We now assign the labels 0 and 1 to the vertices u and v
respectively. Now we assign the label 0 to the 4r + 2 vertices u1, u2, . . ., u4r+2.
Next we assign the label 2 to the 3r + 1 vertices v1, v2, . . ., v3r+1. We now
assign the label 0 to the r + 1 vertices v3r+2, v3r+3, . . ., v4r+2. Then we assign
the label 3 to the 4r vertices x1, x2, . . ., x4r. Now we assign the labels 3 and 2
to the vertices x4r+1 and x4r+2. We now assign the label 1 to the 4r vertices y1,
y2, . . ., y4r. Finally we assign the labels 2 and 3 to the vertices y4r+1 and y4r+2.

Case 4. n ≡ 3 (mod 4).
Let n = 4r + 3, r ≥ 0. Assign the labels 0 and 3 to the vertices u ans v respec-
tively. Then we assign the label 0 to the 4r + 3 vertices u1, u2, . . ., u4r+3. Now
we assign the label 0 to the r + 1 vertices v1, v2, . . ., vr+1. We now assign the
label 2 to the 3r+2 vertices vr+2, vr+3, . . ., v4r+3. Next we assign the label 3 to
the 4r+ 3 vertices x1, x2, . . ., x4r+3. Finally we assign the label 1 to the 4r+ 3
vertices y1, y2, . . ., y4r+3.

Thus shows that this vertex labeling f is a 4-total mean cordial labeling of
DAn,4 follows from the Tabel 7

Case 5. n = 2.
A 4-total mean cordial labeling of DAn,4 is given in Tabel 8

□
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Size of n tmf (0) tmf (1) tmf (2) tmf (3)
n = 4r 11r + 1 11r + 1 11r + 2 11r + 2

n = 4r + 1 11r + 4 11r + 4 11r + 5 11r + 4
n = 4r + 2 11r + 7 11r + 7 11r + 7 11r + 7
n = 4r + 3 11r + 10 11r + 9 11r + 10 11r + 10

Table 7

n u v u1 u2 v1 v2 x1 x2 y1 y2
2 2 3 0 3 0 3 0 1 0 2

Table 8

Theorem 3.7. All shell-Butterfly graphs SBn with shell order n (n ≥ 3) is
4-total mean cordial.

Proof. Let SBn be a shell Butterfly graph. Let V (V ) = {u, v, w, xi, yi : 1 ≤ i ≤ n}
and E (V ) = {uxi, uyi : 1 ≤ i ≤ n} ∪ {xixi+1, yiyi+1 : 1 ≤ i ≤ n− 1} ∪ {uv, uw}.
Obviously |V (V )|+ |E (V )| = 6n+ 3.

Assign the labels 1, 1, 2 to the vertices u, v, w respectively.

Case 1. n ≡ 0 (mod 4).
Let n = 4r, r ∈ N. Assign the label 0 to the 3r + 1 vertices x1, x2, . . ., x3r+1.
Next we assign the label 1 to the r − 1 vertices x3r+2, x3r+2, . . ., x4r. Now we
assign the label 3 to the 3r vertices y1, y2, . . ., y3r. We now assign the label 2
to the r vertices y3r+1, y3r+2, . . ., y4r.

Case 2. n ≡ 1 (mod 4).
Let n = 4r + 1, r ∈ N. Now we assign the label 0 to the 3r + 2 vertices x1, x2,
. . ., x3r+2. Then we assign the label 1 to the r − 1 vertices x3r+3, x3r+4, . . .,
x4r+1. We now assign the label 3 to the 3r + 1 vertices y1, y2, . . ., y3r+1. Next
we assign the label 2 to the r vertices y3r+2, y3r+3, . . ., y4r+1.

Case 3. n ≡ 2 (mod 4).
Let n = 4r + 2, r ∈ N. We now assign the label 0 to the 3r + 2 vertices x1, x2,
. . ., x3r+2. Then we assign the label 1 to the r − 1 vertices x3r+3, x3r+4, . . .,
x4r+1. Next we assign the label 2 to the vertex u4r+2. Now we assign the label
3 to the 3r+2 vertices y1, y2, . . ., y3r+2. we now assign the label 0 to the vertex
y3r+3. Finally we assign the label 2 to the r− 1 vertices y3r+4, y3r+5, . . ., y4r+2.

Case 4. n ≡ 3 (mod 4).
Let n = 4r+ 3, ∈ N. Assign the label 0 to the 3r+ 3 vertices x1, x2, . . ., x3r+3.
Next we assign the label 1 to the r − 1 vertices x3r+4, x3r+5, . . ., x4r+2. We
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now assign the label 2 to the vertex x4r+3. Now we assign the label 3 to the
3r+3 vertices y1, y2, . . ., y3r+3. Then we assign the label 0 to the vertex y3r+4.
Finally we assign the label 2 to the r − 1 vertices y3r+5, y3r+6, . . ., y4r+3.

This shows that f is a 4-total mean cordial labeling follows from the Table 9.
□

Order of n tmf (0) tmf (1) tmf (2) tmf (3)
n = 4r 6r + 1 6r + 1 6r + 1 6r

n = 4r + 1 6r + 3 6r + 2 6r + 2 6r + 2
n = 4r + 2 6r + 4 6r + 4 6r + 4 6r + 3
n = 4r + 3 6r + 6 6r + 5 6r + 5 6r + 5

Table 9

Example 3.8. A 4 - total mean cordial labeling of SB6 is given in figure 1.

Figure 1. SB6

Theorem 3.9. The graph obtained by joining two copies of shell graph by a
path of arbitrary length is 4-total mean cordial for all n ≥ 3.

Proof. Let G be a graph obtained by joining two copies of shell graph by a
path of length. Let V (G) = {u, v, ui, xi, yi : 1 ≤ i ≤ n, u = u1; v = un} and
E (G) = {uxi, vyi : 1 ≤ i ≤ n} ∪ {xixi+1, yiyi+1, uiui+1 : 1 ≤ i ≤ n− 1}.
Obviously |V (G)|+ |E (G)| = 8n− 3.

Assign the label 3 to the n vertices u1, u2, . . ., un. We now assign the label 0
to the n vertices x1, x2, . . ., xn. Finally we assign the label 1 to the n vertices
y1, y2, . . ., yn.
Clearly tmf (0) = tmf (1) = tmf (3) = 2n− 1; tmf (2) = 2n.

□



372 R. Ponraj, S.Subbulakshmi

4. conclusion

Mean cordial labeling was defined in [19]. The total mean cordial labeling
of graphs was introdced in [18]. Motivated on these two concepts, we have in-
troduced k- total mean cordial labeling of graphs. In this paper we investigate
the 4-total mean cordial labeling behaviour of arrow graphs, shell butterfly and
two copies of shell joining by a path. Presently, it is difficult to investigate the
4-total mean cordial labeling behaviour of olive tree,parachutes and Subdivided
the rim of whell graphs. The 4-total mean cordial labeling behaviour of slanting
ladder, mongolial tents, friendship graph, flower snark graph are open problem
for future research work.
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