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A NEW CRITERION FOR SUBDIVISION ITERATION

DETERMINATION OF GENERALIZED STRICTLY

DIAGONALLY DOMINANT MATRICES†

HUI SHI, XI CHEN∗, QING TUO, LE WU

Abstract. Generalized strictly diagonally dominant matrices have a wide
range of applications in matrix theory and practical applications, so it is

of great theoretical and practical value to study their numerical determi-
nation methods. In this paper, we study the numerical determination of

generalized strictly diagonally dominant matrices by using the properties

of generalized strictly diagonally dominant matrices. We obtain a new
criterion for subdivision iteration determination of the generalized strictly

diagonally dominant matrices by subdividing the set of non-prevailing row

indices and constructing new iteration factors for the set of predominant
row indices, new elements of the positive diagonal factors are derived. Ad-

vantages are illustrated by numerical examples.
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1. Introduction

The generalized strictly diagonally dominant matrices are widely used in many
fields such as eigenvalue estimation, economic mathematics, power system the-
ory and cybernetics in application. Whether a matrix is a generalized strictly
diagonally dominant matrix has become a hot issue for many scholars, because
many problems are attributed to the determination of generalized strictly diago-
nally dominant matrix. In [1], Fan Y S et al gave a set of criteria for subdivision
iteration of generalized strictly diagonally dominant matrix by subdividing the
non-dominant row index set of matrices and constructing progressive positive
diagonal factors. In this paper, we based on the research of reference [1], a new
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criterion of subdivision iteration for generalized strictly diagonally dominant
matrix is given by constructing a new positive diagonal matrix.

Let Cn×n be all n× n-order complex matrices, A = (aij) ∈ Cn×n,

N = {1, 2, · · · , n},Λi = Λi(A) =
∑
j ̸=i

|aij | (i, j ∈ N).

Definition 1.1 ([3]). A matrix A = (aij) ∈ Cn×n is called a strictly diagonally
dominant matrix, if |aii| > Λi, for any i ∈ N , and is denoted by A ∈ D. A matrix
A is called a generalized strictly diagonally dominant matrix(ie. non-singular H-
matrix), if there exists a positive diagonal matrix, such that AX ∈ D, and is
denoted by A ∈ D∗.

Definition 1.2 ([3]). A irreducible matrix A = (aij) ∈ Cn×n is called a irre-
ducible diagonally dominant matrix, if for any i ∈ N , |aii| ≥ Λi, and at least
one strictly inequality holds.

Definition 1.3 ([3]). A matrix A = (aij) ∈ Cn×n is called a diagonally dom-
inant matrix with nonzero element chains, if |aii| ≥ Λi, for any i ∈ N , and at
least one strict inequality holds. There always exists nonzero element sequence
aij1aj1j2 · · · ajpj , such |ajj | > Λj , for the i of |aii| = Λi.

Lemma 1.4 ([4]). A irreducible diagonally dominant matrix A = (aij) ∈ Cn×n,
A is called a non-singular H-matrix, and at least one strictly diagonally dominant
row exists.

Lemma 1.5 ([4]). A matrix A = (aij) ∈ Cn×n is called a non-singular H-
matrix, where A is a diagonally dominant matrix with nonzero element chains.

In this paper, we always set |aii| ≠ 0, Λi ̸= 0, and
∑
t∈∅

• = 0. Let A = (aij) ∈

Cn×n,

N1 = {i ∈ N : 0 < |aii| < Λi} , N2 = {i ∈ N : 0 < |aii| = Λi} ,
N3 = {i ∈ N : |aii| > Λi} , Z = {0, 1, 2, · · · }, Z+ = {1, 2, · · · }.

Obviously, N = N1 ∪N2 ∪N3, and A ∈ D, if N1 ∪N2 is empty. A /∈ D, if N3

is empty. Therefore, we always assumes that N1 ∪N2 is not empty, so as N3.

Let A = (aij) ∈ Cn×n. Divide N1 into N
(1)
1 ∪ N

(2)
1 ∪ · · · ∪ N

(m)
1 ( m is an

arbitrary positive integer), where

N
(1)
1 =

{
i ∈ N1 : 0 < |aii| <

1

m
Λi

}
,

N
(k)
1 =

{
i ∈ N1 :

k − 1

m
Λi ≤ |aii| <

k

m
Λi

}
, k = 2, 3, · · · ,m,

and N
(k)
1 may be empty. We set:

x
(k)
1i =

k

m
− |aii|

Λi
(i ∈ N

(k)
1 , k = 1, 2, · · · ,m), x2i =

1

m
(i ∈ N2),
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r0 = 1, r1 = max
i∈N3

(
Λi

|aii|

)
,

rl+1 = max
i∈N3


m∑

k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + rl
∑

t∈N3,t̸=i

|ait|

|aii|

 (l ∈ Z+),

hl+1,i =

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + rl
∑

t∈N3,t̸=i

|ait|

|aii|
(i ∈ N3, l ∈ Z).

In 2012, Fan Y S et al gave the following results :

Theorem 1.6 ([1]). Let A = (aij) ∈ Cn×n, if there exist l ∈ Z, make

|aii|x(k)
1i >

m∑
k=1

(
∑

t∈N
(k)
1 ,t̸=i

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t +
∑
t∈N3

|ait|hl+1,t

(i ∈ N
(k)
1 , k = 1, 2, · · · ,m),

|aii|x2i >

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2,t̸=i

|ait|x2t +
∑
t∈N3

|ait|hl+1,t (i ∈ N2),

then A ∈ D∗.

On this basis, this paper obtained a new positive diagonal matrix by con-
structing a new iterative factor, and gave a new criterion for determining the
subdivision iteration of generalized strictly diagonally dominant matrices, which
finally extended the main results of reference in [1].

For convenience, we employ the following notations.

x
(k)
1i =

k

m
− |aii|

Λi
(i ∈ N

(k)
1 , k = 1, 2, · · · ,m), x3i =

Λi

|aii|
(i ∈ N3),

x2i =

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2,t̸=i

|ait|+
∑

t∈N3

|ait|x3t

|aii|
(i ∈ N2),

r0 = 1,

rl+1 = max
i∈N3


m∑

k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + rl
∑

t∈N3,t̸=i

|ait|x3t

|aii|x3i

 (l ∈ Z),
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hl+1,i =

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + rl
∑

t∈N3,t̸=i

|ait|x3t

|aii|x3i
(i ∈ N3, l ∈ Z),

fl+1,i =

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t +
∑

t∈N3,t̸=i

|ait|x3thl+1,t

|aii|
(i ∈ N3, l ∈ Z),

δl+1 = max
i∈N3


m∑

k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t

|aii|fl+1,i −
∑

t∈N3,t̸=i

|ait|fl,t

 (l ∈ Z+).

2. Main results

Theorem 2.1. Let A = (aij) ∈ Cn×n, if there exists l0 ∈ Z+, make

|aii|x(k)
1i >

m∑
k=1

(
∑

t∈N
(k)
1 ,t̸=i

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + δl0+1

∑
t∈N3

|ait|fl0+1,t

(i ∈ N
(k)
1 , k = 1, 2, · · · ,m),

thenA ∈ D∗, where for any i ∈ N2, existing t ∈ N3 to make |ait| ≠ 0.

Proof. 0 < x
(k)
1i < 1 is established, for any i ∈ N

(k)
1 , k = 1, 2, · · · ,m ; and

0 < x3i < 1, for any i ∈ N3. According to the theorem conditions and definition
of x2i, we have 0 < x2i < 1, for any i ∈ N2; r0 = 1, x3i =

Λi

|aii| , for any i ∈ N3,
we get

Λi = |aii|x3i,

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + r0
∑

t∈N3,t̸=i

|ait|x3t < Λi = |aii|x3i,

then
m∑

k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + r0
∑

t∈N3,t̸=i

|ait|x3t

|aii|x3i
< 1.

From definitions of h1,i, r1, we also get

h1,i ≤ r1 < r0 = 1 (i ∈ N3). (1)

By (1) and r2, then

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + r1
∑

t∈N3,t̸=i

|ait|x3t < Λi = |aii|x3i, (2)
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r1
∑

t∈N3,t̸=i

|ait|x3t ≤
∑

t∈N3,t̸=i

|ait|x3t. (3)

Based on (2), (3), h2,i, and r2, then

h2,i ≤ r2 ≤ r1 < 1 (i ∈ N3).

We assume hs+1,i ≤ rs+1 ≤ rs < 1, when l = s, then

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + rs
∑

t∈N3,t̸=i

|ait|x3t < Λi = |aii|x3i, (4)

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + rs+1

∑
t∈N3,t̸=i

|ait|x3t < Λi = |aii|x3i, (5)

rs+1

∑
t∈N3,t̸=i

|ait|x3t ≤ rs
∑

t∈N3,t̸=i

|ait|x3t. (6)

We obtain hs+2,i ≤ rs+2 ≤ rs+1 < 1 stem from the above findings, for any
i ∈ N3. Therefore, it can be known from Mathematical Induction,

hl+1,i ≤ rl+1 ≤ rl ≤ · · · ≤ r1 < r0 = 1 (i ∈ N3, l ∈ Z+). (7)

By rl+1, hl+1,i, fl+1,i, (7), we have

hl+1,ix3i ≤ rl+1x3i < 1 (i ∈ N3, l ∈ Z), (8)

fl+1,i ≤ hl+1,ix3i ≤ rl+1x3i ≤ rlx3i ≤ · · · ≤ r1x3i < 1 (i ∈ N3, l ∈ Z+),

hl+1,i ≤ hl,i ≤ · · · ≤ h1,i < 1 (i ∈ N3, l ∈ Z+), (9)

then

fl+1,i ≤ fl,i ≤ · · · ≤ f1,i < x3i < 1 (i ∈ N3, l ∈ Z+). (10)

As fl+1,i defined and (8), we also get

0 ≤ x3i(rl − hl,i) < 1 (i ∈ N3, l ∈ Z+),

and for any i ∈ N3,

|aii|fl+1,i −
∑

t∈N3,t̸=i

|ait|fl,t =
m∑

k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t

+
∑

t∈N3,t̸=i

|ait|

∑
t∈N3,t̸=i

|ait|x3t(rl − hl,t)

|att|

≥
m∑

k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t.

(11)
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By (11), x3i, and δl+1, we can obtain

0 < δl+1 ≤ 1 (i ∈ N3, l ∈ Z+). (12)

δl+1fl+1,i < x3i < 1 (i ∈ N3, l ∈ Z+). (13)

Since for the theorem conditions and x2i , (13), for any i ∈ N2, then

|aii|x2i >

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2,t̸=i

|ait|x2t + δl+1

∑
t∈N3

|ait|fl+1,t. (14)

According to the above formula and theorem conditions, we can find l0 ∈ Z+,
and a positive number ε that can be sufficiently small, so that the following
results is true,

|aii|x(k)
1i −[

m∑
k=1

(
∑

t∈N
(k)
1 ,t̸=i

|ait|x(k)
1t )+

∑
t∈N2

|ait|x2t+δl0+1

∑
t∈N3

|ait|fl0+1,t] > ε
∑
t∈N3

|ait|,

(15)

for any i ∈ N
(k)
1 (k = 1, 2, · · · ,m), and

|aii|x2i−[

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t )+

∑
t∈N2,t̸=i

|ait|x2t+δl0+1

∑
t∈N3

|ait|fl0+1,t] > ε
∑
t∈N3

|ait|.

(16)
for any i ∈ N2. We construct a positive diagonal matrixX =diag(x1, x2, · · · , xn),
where

xi =


x
(k)
1i , i ∈ N

(k)
1 , k = 1, 2, · · · ,m;

x2i, i ∈ N2;

δl0+1fl0+1,i + ε, i ∈ N3.

Let B = AX = (bij). By (15), for any i ∈ N
(k)
1 (k = 1, 2, · · · ,m), then

|bii| − Λi(B) = |aii|x(k)
1i − [

m∑
k=1

(
∑

t∈N
(k)
1 ,t̸=i

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t

+
∑
t∈N3

|ait|(δl0+1fl0+1,t + ε)] > 0.

From (16) , for i ∈ N2 , we have

|bii| − Λi(B) = |aii|x2i − [

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2,t̸=i

|ait|x2t

+
∑
t∈N3

|ait|(δl0+1fl0+1,t + ε)] > 0.
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For any i ∈ N3, |aii| > Λi(A) >
∑

t∈N3,t̸=i

|ait|, ε > 0, then

ε(|aii| −
∑

t∈N3,t̸=i

|ait|) > 0. (17)

We can obtain the following results by (10), (18), and (12), and δl+1,

|aii|δl0+1fl0+1,i− [

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t )+

∑
t∈N2

|ait|x2t+δl0+1

∑
t∈N3,t̸=i

|ait|fl0,t] ≥ 0,

(18)

|aii|δl0+1fl0+1,i−[

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t )+

∑
t∈N2

|ait|x2t+δl0+1

∑
t∈N3,t̸=i

|ait|fl0+1,t] ≥ 0.

(19)
For any i ∈ N3 ,

|bii| − Λi(B) = |aii|(δl0+1fl0+1,i + ε)− [

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t )

+
∑
t∈N2

|ait|x2t +
∑

t∈N3,t̸=i

|ait|(δl0+1fl0+1,t + ε)]

= |aii|δl0+1fl0+1,i − [

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t

+δl0+1

∑
t∈N3,t̸=i

|ait|fl0+1,t] + ε(|aii| −
∑

t∈N3,t̸=i

|ait|) > 0.

from (17) and (19). In summary, |bii| > Λi(B), for any i ∈ N , ie. B ∈ D, then
A ∈ D∗. □

Remark 2.1. Assuming N2 = ∅, and
∑

t∈N3,t̸=i

|ait| ̸= 0 for any i ∈ N3, then

x3i ≤ r1, where r0 = 1, l = 1, and r1 = max
i∈N3

(
Λi

|aii|

)
. Furthermore, by 0 < r1 < 1,

and (7), (12), h2,i, f2,i, δ2, and h2,i, we can get

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) + r1

∑
t∈N3,t̸=i

|ait|x3t

|aii|
<

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) + r1

∑
t∈N3,t̸=i

|ait|

|aii|
,

f2,i ≤ h2,ix3i < h2,i (i ∈ N3),

δ2f2,i ≤ h2,ix3i < h2,i (i ∈ N3).

To sum up, theorem 2.1 in this paper generalizes the main results of reference
[1], when N2 ̸= ∅, l = 1.
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Meanwhile, the main results of reference [6, 7] are also generalized. In theorem
2.1 we always have 0 < x2i < 1 for any positive integer m, when N2 ̸= ∅. And
it is illustrated by numerical examples.

The criterion of Theorem 2.1 can be determined by computer using the fol-
lowing algorithm:

INPUT: A matrix A = (ait) ∈ Cn×n, and positive integer m, L.
OUTPUT: A ∈ D∗, X =diag(x1, x2, · · · , xn).

Step1. Compute Λi, N1, N2, N3, and x
(k)
1i , x3i, x2i.

Step2. Let r0 = 1, l = 1, compute h1,i, r1, f1,i.
Step3. Computehl+1,i, rl+1, fl+1,i, δl+1.
Step4. If

|aii|x(k)
1i >

m∑
k=1

(
∑

t∈N
(k)
1 ,t̸=i

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + δl+1

∑
t∈N3

|ait|fl+1,t,

for any i ∈ N
(k)
1 (k = 1, 2, · · · ,m), and∑

t∈N3

|ait| ≠ 0,

for any i ∈ N2, then A ∈ D∗. And output X =diag(x1, x2, · · · , xn), STOP,
where

xi =


x
(k)
1i , i ∈ N

(k)
1 , k = 1, 2, · · · ,m;

x2i, i ∈ N2;

δl+1fl+1,i, i ∈ N3.

Otherwise, go to Step5.
Step5. Set l = l + 1, when l < L, and go to Step3. Otherwise, output

“failure”, STOP.
Similarly, we can generalize the criterion in the case of irreducibility and

non-zero element chain, from lemma 1.4 and lemma 1.5.

Theorem 2.2. Let A = (aij) ∈ Cn×n be a irreducible matrix, if there exists

l0 ∈ Z+, such that

|aii|x(k)
1i ≥

m∑
k=1

(
∑

t∈N
(k)
1 ,t̸=i

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + δl0+1

∑
t∈N3

|ait|fl0+1,t

(i ∈ N
(k)
1 , k = 1, 2, · · · ,m),

And a strict inequality holds for at least one i ∈ N
(k)
1 , then A ∈ D∗.

Theorem 2.3. Let A = (aij) ∈ Cn×n, if there exists l0 ∈ Z+, then

|aii|x(k)
1i ≥

m∑
k=1

(
∑

t∈N
(k)
1 ,t̸=i

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + δl0+1

∑
t∈N3

|ait|fl0+1,t



A New Criterion for Subdivision Iteration Determination of Generalized ... 311

(i ∈ N
(k)
1 , k = 1, 2, · · · ,m),

and for i where the above equation holds, there always have nonzero element
chain aij1aj1j2 · · · ajgj, such that

|ajj |x(k)
1j >

m∑
k=1

(
∑

t∈N
(k)
1 ,t̸=j

|ajt|x(k)
1t ) +

∑
t∈N2

|ajt|x2t + δl0+1

∑
t∈N3

|ajt|fl0+1,t

(j ∈ N
(k)
1 , k = 1, 2, · · · ,m),

then A ∈ D∗.

3. Numerical example

Example 3.1. Consider matrix

A =


1.8 0 0.9 0 0 3.1
1 6 6 1 1 75
1 0 3 1 1 0
1 1 1 19 1 2
0 0 1 1 20 1
1 1 0 1 0 50

 .

Set m = 1, we get N1 = N
(1)
1 = {1, 2}, N2 = {3}, N3 = {4, 5, 6}. And

x
(1)
11 = 0.5500, x

(1)
12 = 0.9286, x23 = 1. From r0 = 1, r1 = max

i∈N3

{ 6
19 ,

3
20 ,

3
50} = 6

19 ,

rl+1 = max
i∈N3


m∑

k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + rl
∑

t∈N3,t̸=i

|ait|

|aii|

 (l ∈ Z+),

and

hl+1,i =

m∑
k=1

(
∑

t∈N
(k)
1

|ait|x(k)
1t ) +

∑
t∈N2

|ait|x2t + rl
∑

t∈N3,t̸=i

|ait|

|aii|
(i ∈ N3, l ∈ Z),

it significantly that 0 < hl+1,i < 1 (i ∈ N3), and when i = 2, for any l ∈ Z, we
have

|a22|x(1)
12 = 5.5714 < |a21|x(1)

11 + |a23|x23 + |a24|hl+1,4 + |a25|hl+1,5 + |a26|hl+1,6

= 6.55 + |a24|hl+1,4 + |a25|hl+1,5 + |a26|hl+1,6.

Comparatively, it is impossible to determine that matrix A is a generalized
strictly diagonally dominant matrix by using the criteria of theorem 1 in reference
[1], [6], [7], where m = 1 for any l ∈ Z. However, when we set m = 1, l0 = 1,

we can obtain x
(1)
11 = 0.5500, x

(1)
12 = 0.9286, x34 = 0.3158, x35 = 0.1500, x36 =
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0.0600, x23 = 0.3386, f1,4 = 0.1013, f1,5 = 0.0242, f1,6 = 0.0318, f2,4 = 0.1006,
f2,5 = 0.0238, f2,6 = 0.0317, δ2 = 0.9981, and

|a11|x(1)
11 = 0.9900 > |a12|x(1)

12 +|a13|x23+δ2(|a14|f2,4+|a15|f2,5+|a16|f2,6) = 0.4027,

|a22|x(1)
12 = 5.5714 > |a21|x(1)

11 +|a23|x23+δ2(|a24|f2,4+|a25|f2,5+|a26|f2,6) = 5.0753.

Obviously, the matrix A satisfies the condition of theorem 2.1 in this paper, then
A ∈ D∗.

In fact, we construct a positive diagonal matrix

X =diag(0.5500, 0.9286, 0.3386, 0.1004, 0.0238, 0.0316),

then

AX =


0.9900 0 0.3047 0 0 0.0979
0.5500 5.5714 2.0316 0.1004 0.0238 2.3695
0.5500 0 1.0158 0.1004 0.0238 0
0.5500 0.9286 0.3386 1.9084 0.0238 0.0632

0 0 0.3386 0.1004 0.4752 0.0316
0.5500 0.9286 0 0.1004 0 1.5797

 .

It is easily to prove that AX ∈ D∗, namely A ∈ D∗.
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