DOI QR코드

DOI QR Code

(Ba0.7Sr0.3-3x/2Lax)(Ti0.9Zr0.1)O3 세라믹의 Sr2+-자리에 대한 La3+ 치환에 따른 유전 특성

Dielectric Properties of (Ba0.7Sr0.3-3x/2Lax)(Ti0.9Zr0.1)O3 Ceramics with La3+ Substitution for Sr2+-Site

  • 김시현 (경기대학교 신소재공학과) ;
  • 김주혜 (경기대학교 신소재공학과) ;
  • 김응수 (경기대학교 신소재공학과)
  • Si Hyun Kim (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Ju Hye Kim (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Eung Soo Kim (Department of Advanced Materials Engineering, Kyonggi University)
  • 투고 : 2023.09.16
  • 심사 : 2023.10.18
  • 발행 : 2023.11.27

초록

The effects of La3+ substitution for Sr2+-site on the crystal structure and the dielectric properties of (Ba0.7Sr0.3-3x/2Lax) (Ti0.9Zr0.1)O3 (BSLTZ) (0.005 ≤ x ≤ 0.02) ceramics were investigated. The structural characteristics of the BSLTZ ceramics were quantitatively evaluated using the Rietveld refinement method from X-ray diffraction (XRD) data. For the specimens sintered at 1,550 ℃ for 6 h, a single phase with a perovskite structure and homogeneous microstructure were observed for the entire range of compositions. With increasing La3+ substitution (x), the unit cell volume decreased because the ionic size of La3+ (1.36 Å) ions is smaller than that of Sr2+ (1.44 Å) ions. With increasing La3+ substitution (x), the tetragonal phase fraction increased due to the A-site cation size mismatch effect. Dielectric constant (εr) increased with the La3+ substitution (x) due to the increase in tetragonality (c/a) and the average B-site bond valence of the ABO3 perovskite. The BSLTZ ceramics showed a higher dielectric loss due to the smaller grain size than that of (Ba0.7Sr0.3)(Ti0.9Zr0.1)O3 ceramics. BSLTZ (x = 0.02) ceramics met the X7R specification proposed by the Electronic Industries Association (EIA).

키워드

과제정보

This work was supported by Kyonggi University's Graduate Research Assistantship 2023.

참고문헌

  1. H. Kishi, Y. Mizuno and H. Chazono, Jpn. J. Appl. Phys., 42, 1 (2003). 
  2. IEA. Global EV Outlook 2022. Published May, 2022 from https://www.iea.org/reports/global-ev-outlook-2022 
  3. M. J. Pan and C. A. Randall, IEEE. Electr. Insul. Mag., 26, 44 (2010). 
  4. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi and T. Okuda, J. Eur. Ceram. Soc., 19, 1043 (1999). 
  5. Y. Tsur, T. D. Dunbar and C. A. Randall, J. Electroceram., 7, 25 (2001). 
  6. Y. K. Choi, T. Hoshina, H. Takeda and T. Tsurumi, J. Ceram. Soc. Jpn., 118, 881 (2010). 
  7. S. B. Reddy, K. P. Rao and M. S. R. Rao, Appl. Phys. A, 89, 1011 (2007). 
  8. S. B. Reddy, K. P. Rao and M. S. R. Rao, J. Alloys Compd., 481, 692 (2009). 
  9. S. G. Lee and D. S. Kang, Mater. Lett., 57, 1629 (2003). 
  10. N. Nanakorn, P. Jalupoom, N. Vaneesorn and A. Thanaboonsombut, Ceram. Int., 34, 779 (2008). 
  11. B. L. Cheng, C. Wang, S. Y. Wang, H. B. Lu, Y. L. Zhou, Z. H. Chen and G. Z. Yang, J. Eur. Ceram. Soc., 25, 2295 (2005). 
  12. R. D. Shannon, Acta Crystallogr., A32, 751 (1976). 
  13. J. A. Basmajian and R. C. Devries, J. Am. Ceram. Soc., 40, 373 (1957). 
  14. D. Kolar, M. Trontelj and Z. Stadler, J. Am. Ceram. Soc., 65, 470 (1982). 
  15. H. Maiwa, Jpn. J. Appl. Phys., 46, 7013 (2007). 
  16. M. H. Lin and H. Y. Lu, Mater. Sci. Eng., 323, 167 (2002). 
  17. J. Y. Kim, J. S. Ryu, S. H. Jo and H. S. Lee, Ceram. Int., 42, 11739 (2016). 
  18. R. Pirc and R. Blinc, Phys. Rev. B, 70, 134107 (2004). 
  19. K. Tsuda and M. Tanake, Appl. Phys. Express, 6, 101501 (2013). 
  20. A. B. Spierings, M. Schneider and R. Eggenberger, Rapid Prototyping J., 17, 380 (2011). 
  21. T. Roisnel and J. R. Carvajal, Mater. Sci. Forum, 378, 118 (1999). 
  22. T. Takeuchi, M. Tabuchi and H. Kageyama, J. Am. Ceram. Soc., 82, 939 (1999). 
  23. T. Iamsasri, G. Esteves, H. Choe, M. Vogt, S. Prasertpalichat, D. P. Cann, S. Gorfman and J. L. Jones, J. Appl. Phys., 122, 064104 (2017). 
  24. T. Mitsui and W. B. Westphal, Phys. Rev., 124, 1354 (1961). 
  25. J. R. Tessman and A. H. Kahn, Phys. Rev., 92, 890 (1953). 
  26. K. Edalati, M. Arimura, Y. Ikoma, T. Daio, M. Miyata, D. J. Smith and Z. Horita, Mater. Res. Lett., 3, 216 (2015). 
  27. Y. Canchanya-Huaman, A. F. Mayta-Armas, J. Pomalaya-Velasco, Y. Bendezu-Roca, J. A. Guerra and J. A. RamosGuivar, Nanomaterials, 11, 2311 (2021). 
  28. P. S. Jangade, Int. J. Res. Anal. Rev., 8, 361 (2021). 
  29. S. Yadav, M. Chandra, R. Rawat, V. Sathe, A. K. Sinha and K. Singh, J. Phys.: Condens. Matter, 32, 445402 (2020). 
  30. V. V. Lemanov, E. P. Smirnova, P. P. Syrnikov and E. A. Tarakanov, Phys. Rev. B, 54, 3151 (1996). 
  31. R. K. Zheng, J. Wang, X. G. Tang, Y. Wang, H. L. Chan and C. L. Choy, J. Appl. Phys., 98, 084108 (2005). 
  32. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B, 54, R15622 (1996). 
  33. S. H. Yoon, M. Y. Kim and D. H. Kim, J. Appl. Phys., 122, 154103 (2017). 
  34. H. T. Yu, Y. D. Dai, M. J. Hu, D. B. Luo, M. H. Cao and H. X. Liu, Ferroelectrics, 356, 122 (2007). 
  35. I. D. Brown and D. Altermatt, Acta Crystallogr., B41, 244 (1985). 
  36. N. E. Brese and M. O'Keeffe, Acta Crystallogr., B47, 192 (1991). 
  37. H. Tanaka, H. Tabata, K. Ota and T. Kawai, Phys. Rev. B, 53, 14112 (1996). 
  38. S. Y. Lee, W. Choi, W. S. Kim and K. Y. Kim, J. Korean Inst. Tele. Electron. A, 29, 17 (1992). 
  39. T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto and T. Tsurumi, Jpn. J. Appl. Phys., 47, 7607 (2008).