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AN ASYMPTOTIC EXPANSION FOR THE FIRST
DERIVATIVE OF THE HURWITZ-TYPE EULER ZETA
FUNCTIONf

MIN-SOO KIM

ABSTRACT. The Hurwitz-type Euler zeta function (g(z,q) is defined by

the series
— (="
CE Z’q - T N
0= g
for Re(z) > 0 and ¢ # 0,—1,—2,..., and it can be analytic continued

to the whole complex plane. An asymptotic expansion for (3 (—m,q) has
been proved based on the calculation of Hermite’s integral representation

for (g (2, ).
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1. Introduction

Elizalde [10] gave an asymptotic expansion for the first derivative

0
"(— = — =0,1,2,... 1
C( nvq) 32C<Z,q) Z:7n7 n 07 9 4y ) ( )
of the Hurwitz zeta function
> 1
2,) =Y ———, Re(z)>1, ¢#0,—1,-2, ... P
((z,9) ;(n+q)z (2) q# (2)

in inverse powers of ¢q. The procedure employed is similar to the standard method:
Watson’s Lemma and Laplace’s method. The Hurwitz zeta function ((z,¢) ad-
mits an analytic continuation to the entire complex plane except for the simple
pole at z =1, and the Riemann zeta function (z) is a special case of {(z, q):

((z,1) = ((2)
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(see [6, 10, 17]).

The first order derivative of {(z, ¢) for z has also been linked to some integrals
involving cyclotomic polynomials and iterated logarithms in [2], polygamma
functions of negative order in [3], the multiple gamma functions in [4, 5, 7],
and a log-gamma integral in [8] and [11]. In [15], Seri obtained an asymptotic
formula for higher derivatives of the Hurwitz zeta function ((z,¢) with respect
to its first argument as (™ (2, q) = 9™((2,q)/0z™.

The Hurwitz-type Euler zeta function (or, equivalently, the alternating Hur-
witz zeta function) is defined by the series (see [17, p. 37, (2.2)] and [9, p. 514,

(3-1)))

o (=D)"
CE %,q) = ) 3
0= 3)
where Re(z) > 0and ¢ # 0, —1,—2,... (cf. [14, p. 308, (3.4)]). It can be analytic
continue as an entire function in the complex plane. The Dirichlet eta function
(or, the alternating Riemann zeta function) n(z) is a special case of (g(z, q):

(~1)"+

CE(Zvl) :77(2) = ZT? (4)
n=1

where Re(z) > 0 (see [9, p. 514, (3.2)]). As in [10], we denote by

Chlz0) = 2-Co(z0). @

In this note, we shall prove an asymptotic expansion for ¢'(—m, ¢) based on
the following calculation of Hermite’s integral representation for (g(z,q).

Proposition 1.1 ([17, p. 38, Proposition 1]). For all z and Re(q) > 0

1 —z e 2 2\ — . _ t eﬂ-tdt
= — 2 o t L= —_—.
Ce(2,0) = 547" + /0 (¢" + )"/ "sin |z tan 2| @
Remark 1.1. This expression exhibits the non-singularity structure of {g(z, q)
(and J(z,q) in Williams and Zhang’s [17] notation) explicitly, since the integral
inside can be analytic continued to all complex numbers z € C due to it uniformly
convergents for |z| < R with R > 0.

Proposition 1.2. Forn =0,1,2,..., we have an asymptotic expansion
1 . 1&Eua(OrRk+2+1) o0 . 1
Q) =-q¢ % — = E # O ————
Ce(z,q) 2q 2 (2]€—|— 1)!F(Z) q + g2ntz+3

k=0

for |q| tending to co, where the gamma function T'(z) is defined by the following
Mellin integral

o0
F(z):/ et ldt
0
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and E,(x) are the Euler polynomials defined by the generating function

9ext o tn
1 = Z E”(x)ﬁ' (6)
n=0 :

Remark 1.2. This formula was studied by Hu and Kim in [12] from a different
method. In particular, Hu and Kim [12] has derived the asymptotic expansions
for higher order derivatives (%)m Ce(z,q), where |g| — oo and z € C.

Example 1.3. For n = 0 and n = 1, Proposition 1.2 yields the asymptotic:

1.1 1

1 —z 1 —z—1 1 —z—3 1

From this, we immediately get (5(0,¢) = 1.

Now we using the similar method in [10, pp. 348-349, (6)—(17)].
By Proposition 1.1, we arrive to the following expression for the first derivative

1 —z
(B(20) = =54 “logg+1-.(), (7)
where
> : ¢ ¢ Tt
I_.(q) = 2/ (¢* +t*)"2 cos (ztan_l ()) tan~! () ;ti
0 q q) e =1 (8)
- /Oo(q2 + %) 3 sin | ztan~! ! log(q® + tz)ﬁ
0 q 627rt -1
(cf. [10, (8))).
Theorem 1.4. Form =0,1,2,..., we have the following asymptotic expansion

1 1 e (2k—m
Cp(=m.q) ~ —5¢" logg + 7 (1 +mlogq)g™ " = " az(m)g~**"*,
k=1

which is valid for large |q| and |argq| < 7 — 3§ < 7 with any fired 0 < § < ,
where the coefficients aa,(m) are given by

2%
m m —l)h
(m) %E%H(O) ((2k+1) logq + hZO (h) 21(<h+1> » 2k <m—1, ©
a2k\m) = m h -

$E2i1(0) 3 (7) g 2k > m.

Example 1.5. The formula (9) gives a closed form evaluation of the coefficients
ag(m) in terms of the numbers Eop11(0). For k =1,2,3,..., the first few values



1412 Min-Soo Kim

are

azk(0) = %E%“(O)ﬁ’
on(V) = 3B (5057~ 57 )
a2k (2) = %EQ’““(O) (2k1+1 - 2% * 2k1— 1) '
Therefore we obtain
0.0~ g loga+ ot - ;3 ey (10

11 1 I~ Eot1(0) _op
"(=1,g) ~ =+ ~logqg — —ql ZN e =2k
Ce(—1,9) 1 T glosa—gqloga+ 2;;:1 okt 2k?

and

Eog (2
C’E(—Z,Q)N< log q + )q—q log g — Z 2k+122+k1 2]1 7y @1 (12)

In a similar way, we can derive the expansion for the coefficients agy(3) :

h
%E%H ((2k+1 ) logq + Z ( )Qk 1h)+1> 2k <2,

agk(3) = 3 1)h (13)
%E%H( )hzo( )2k h+1° 2k = 3.
Setting k = 1, we have
1 11
=1 - 14
az(3) = glogg+ 1, (14)
since E3(0) = %. And for k =2,3,4,..., we get
3FE 0
asy(3) = — 2i41(0) (15)

(2k +1)2k(2k — 1)(2k — 2)°
Then substituting these two expressions into Theorem 1.4 with m = 3, we get
that

11 1 1 1
(p(=3,9) ~ — (48 + logq) +70+ 3logq)q® — 5(13 log g

8

16
n >, 3FE5141(0) —(2k—2) (16)

2 (2 + 1)2k(2k — 1)(2k — 2) '

Similarly, we also have
13 1 1
(= < log q) g+ (1 +4logq)q” - 54" logg

oo 17
B 12F2;,11(0) o) (17)

£ (2k +1)2k(2k — 1)(2k — 2)(2k — 3)
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In what follows, we will use the usual convention that an empty sum is taken
to be zero. Applying different methods with [17, p. 41, (3.8)], by Proposition
1.1 with z = —m for m = 0,1,2,..., we get the following proposition.

Proposition 1.6. Form =0,1,2,..., we have

1 1 2] m
Glema =g +3 Y (40 )i e (0)

k=0

where Ey(x) denotes the k-th Euler polynomials and |-| denotes the floor func-
tion. This implies (g(—m,q) = %Em(q). In particular, when m = 0, we obtain

2. Main results
First, we go to the proof Proposition 1.2.

Proof of Proposition 1.2. We rewrite Proposition 1.1 in an equivalent form
as (see [17, p. 40, (3.1)])

1 00 e(lfq)ttzfl g 18
= t.
CE(qu) F(Z) /(; 1 +€t ( )

And by noticing that

th LoV, (19)

11 g: E5,(0)
—— == '
1+e 2 P k!
we get the following integral representation

N

1o o1 1L EO
<E(Z7q+1):r(z)/o e 1<1+6t—22 : )tk>dt

N
1 Ek(o) > —qt k+2—1
o / emath gy,
k=0 0

(20)

Since the term in the bracket equals to O(tV*1!) as ¢t — 0, the above integral
yields a function which is analytic for Re(z) > —N — 1. Evaluating the second
integral and making use of the functional equation for (g(z, q)

1
we obtain an asymptotic expansion at infinity

N



1414 Min-Soo Kim

where Re(q) > 0. By noticing that Ey(0) =1 and F9;(0) =0 for k =1,2,3,...,
(21) can also be written in an equivalent form

1 . 1 Eup(OPRk+241) o .y 1
S —— E z 0] 22
Ce(2,9) 2q 5 2 2k + DT (2) q + @ntat3 )’ (22)
forn =0,1,2,.... This completes the proof. U

Proof of Theorem 1.4. The proof of Theorem 1.4 is based on the following
two lemmas.

Lemma 2.1 ([10, p. 348, (9)]). We have
- + 0o (_1)h (t)2h+l
tan™! [ = | = - ,
o <q) ,; 2h+1 \4q
e’} _l)h_l ¢ 2h
log(q® + %) = 21 GV (8 .
0g(q® +1) =2logg + Y

h=1 q

Lemma 2.2. For allm =20,1,2,..., we have

1 —m
I.(q) = 4(1 + mlogq)g Za% —(2k—m-+1)

where asg(m) is defined in (9).

Proof. From Euler’s formula, a nonzero complex number z = ¢+it can be broken
down into

= (g +it)"

_ (\/meitanfl(gmm 23)

= (@ +t))% (cos (mtanl (;)) +isin (mtanl (2))) :

where m > 0. Thus, we may write

Re (<tan1 <;> - %1og(q2 + %) > + it) >
= (¢* +1%)7 cos (mtan ( )) ( ) (24)
1(q +t3) % si (mtan ( )>logq + %)

Recall Riemann’s integral (see [6, p. 251, Theorem 12.2])

[\)

00 pz—1,(1—q)t

I'(2)¢(z,q) :/o ﬁdt, Re(z) > 1, (25)
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which enables ((z,¢q) to be analytically continued to the whole complex plane

except for a simple pole at z = 1 with residue 1. If setting 2z =¢+1,q = % and
letting t — 27t in (25), then we have

oo e oo 4 i
/ ;thdt:/ () e (1 dt
0 et — 1 0 et -1 2
41 co 40t
1 t
= (2W> / ol ezldt (26)
o _
1 41 1
=(=) TEe+n¢(+1,=).
2 2

In what follows, we shall prove asymptotic expansions for the integrals on the
right hand side of (8). Firstly we immediately see from (8) with z = —m and
(24) that

emtdt

I,(q) = 2Re /OOO (tanl (;) - %‘log(q2 + t2)) (¢ +it)me%t7_1. (27)

And by using Lemma 2.1 and expanding (g+it)™ by the binomials, (27) becomes
to

© (= (D" m kK k42h41
Im(q)ZQRe/O <ZZ%H . g kiRt

k
Lonen (m GO o kan | €t
50 (1) e ) 2
k=0 h=1
m oo _op_ k+2h+2
(—l)hq 2h—1 <m> e 1
oo (3535 G () ot (L
k=0 heo 2h +1 k 21 (28)

1
xF(k+2h—|—2)§<k+2h+2,2)

m m 1 k+1 1
— mokgktl Fk+DC(k+1,= )1
k_O(k q" " (%) (k+ )C( +1,5 ) logg
m oo 1. k+2h+1
_EZZ m\ (=1)" 12k+1qm7k72h 1
2 k h 2w

xT(k 4 2h + 1)¢ <k+2h+1,;>),
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in which the last equality follows from (26). Then by applying an elementary
calculation procedure for the expression on the right side of (28), we have

m %) ( 1) qm k—2h—1 1
Imla) =2 Z 1 (2m)2hrhee 2Ch+E+1)IC (20 +k+2, 3
h=0
m m—k
_ m\ p1 9" “logq,, 1
2 Z (k)l (27r)k+1 ]f( (k +1, 9
. /m\ (—=1)h—1ik+1 gm—k=2h ' 1
- Z <k> h (2w)2h+k+1(2h+k)( 2h+k+1,§ .
(29)

Now recall the following Euler’s formula for ((2k) (see [6, p. 266, Theorem
12.17])

¢ <2k, ;) = (2%F —1)¢(2k)

T 2k
= (22F —1)(—1)k*? (22(2;)! Boy,

=1 2(2k)! Eax-1(0),

where k =1,2,3,..., and the third equality following from [16, Corollary 3.2]

(2™ — 1)B,, = —%Em,l(()), m=1,2,3, (31)
Then combining (29) with (30), we obtain
T (q):_l i — (m #Eh & (O)q—(2h+k—m+1)
" 2 k)2h+1 2Rt
k=0 h=0
k even
AT 0)g~ =™ 10
2 2\ k) &4 (32)
Koda

m\ 1 _ —m
(k)mEWk(o)q ik,

T
Il
)

+
N =
NE
Nt

[}
[N
=%

Finally, after some calculation, (32) becomes to

Ln(q) = 4(1—|—mlogq —(1—m) _ Za% g~ (@k—m+1) (33)
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where the coefficients asx(m) are given by

5 E2k41(0 ( ari1) logq + Z (h )2k 1h)+1> 2k <m —1,
CLZk(m) = 1 m )"
3E2k41(0) Z e =" =2 2k = m,
and E, (z) are the Euler polynomials. This completes the proof. O

Finally, by (7) with z = —m and Lemma 2.2, we get Theorem 1.4.
Proof of Proposition 1.6. For m =0,1,2,..., if setting z = —m in Proposi-
tion 1.1 and use (23), then we easily get that

7Tt dt

Ce(-m,q) = 1q —2Im/ q+it)™ tf

: —. (34)

On the right hand side of (34), an application of the binomial identity yields
”tdt ko1 [0 themidt
QIm/ (g+at)™ QkZO < > (—1)= /O SR (35)
k odd

Combining (26), (30), (31), (34), and (35), we obtain

i (Do (2)

k odd
x kI(2M —1)¢(k+ 1)
52 ] (36)
1 ., m m—2k—1 /02k+2 Bojy2
= —¢g™ — 9 1) =2kr2
24 kZ:O <2k+1>q ( Jok+2
|_m2—1

1 1 m —2k—1
-.om - m E 0
54 + 5 1;) (2k+1)q 2k+1(0),

where || denotes the floor function, and the proposition by noticing Fqx(0) =0
for k=1,2,3,....
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