DOI QR코드

DOI QR Code

Potentially-innovative options in designing suspension bridges with railway crossing

  • F. Casciati (College of Civil Engineering and Architecture, Zhejiang University) ;
  • S. Casciati (College of Civil Engineering and Architecture, Zhejiang University)
  • 투고 : 2023.05.29
  • 심사 : 2023.11.01
  • 발행 : 2023.11.25

초록

Both the first author and the company of the second author were involved, directly or indirectly, in the design stage of a permanent link between the bottom of the Italian peninsula and the nearby Sicily island. This ambitious project was left in stand-by from 2013 to 2023. The current political revival originates some thoughts on the updated desired performance of suspension bridges, without any immediate reference to that specific crossing. It is simply regarded as a starting point. After an update on recent worldwide realizations, the authors focus their attention on four basic aspects: the span length, the girder scheme, the foundation technology and the bridge runability. Eventually, structural control and monitoring aspects are discussed as potentially innovative options in designing suspension bridges with railway crossing.

키워드

참고문헌

  1. Ansar, A., Flyvbjerg, B., Budzier, A. and Lunn, D. (2016), "Does infrastructure investment lead to economic growth or economic fragility? Evidence from China", Oxford Review of Economic Policy, 32(3), 360-390. https://doi.org/10.1093/oxrep/grw022
  2. Bontempi, F. (2022), "Ponte di Messina, venti anni fa", [in Italian] Ingenio. www.ingenio-web.it/articoli/ponte-di-messina-venti-anni-fa/
  3. Brancaleoni, F. and Diana, G. (1993), "The aerodynamic design of the Messina Straits Bridge", J. Wind Eng. Industr. Aerod., 48, 395-409. https://doi.org/10.1016/0167-6105(93)90148-H
  4. Cai, X., Liu, W., Su, Y. and Yang, J. (2023), "Mechanical deformation properties of Continuous Welded Rail on kilometer-span suspension bridge for high-speed railway", High-speed Railway, 1(2), 97-109. https://doi.org/10.1016/j.hspr.2023.04.002
  5. Calzona, R. (2008), La ricerca non ha fine. Il ponte sullo Stretto di Messina, partially in Italian, DEI, Roma, Italy.
  6. Casciati, F. (2006a), "The Messina Straits Bridge", In: 4WCSCM: The 4th World Conference on Structural Control and Monitoring: University of California, San Diego, CA, USA, July, Proceedings and Book of Abstracts, Keynote T3, 446.
  7. Casciati, F. (2006b), "The challenge of long-span suspended bridges", Proceedings of the 3rd European Workshop Structural Health Monitoring, Granada, Spain, July.
  8. Casciati, F. and Faravelli, L. (2007), "Design Bases vs. Expected Performance for Long Span Suspension Bridges", In: Faber M.H.; Vrouwenvelder T.; Zilck K.; Aspects of Structural Reliability, pp. 1-13. ISBN: 9783831607525
  9. Casciati, F. and Giuliano, F. (2009), "Performance of multi-TMD in the towers of suspension bridges", J. Vib. Control, 15(6), 821-847. https://doi.org/10.1177/1077546308091455
  10. De Miranda, M. (2022), "Long/span Bridges", In: Innovative Bridge Design Handbook, ed. by A. Pipinato, Elsevier.
  11. Fan, Z., Huang, Q., Ren, Y., Ye, Q., Chang, W. and Wang, Y. (2023), "Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge", Smart Struct. Syst., Int. J., 31(2), 183-197. https://doi.org/10.12989/sss.2023.31.2.183
  12. Farooq, A. (2017), "Third Bosphorus Bridge-An Overview", In: The 39th IABSE Symposium - Engineering the Future, Vancouver, Canada, September.
  13. Ge, Y. (2016), "Aerodynamic challenge and limitation in long-span cable-supported bridges", In: The 2016 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM16), Jeju Island, Korea, August-September.
  14. Ge, Y., Xia, J., Zhao, L. and Zhao, S. (2018), "Full aeroelastic model testing for examining wind-induced vibration of a 5,000 m spanned suspension bridge", Front. Built Environ., 4. https://doi.org/10.3389/fbuil.2018.00020
  15. German Institute for Standardization (2014), Railway vehicles 2. Railway applications: wheelsets and bogies; DIN-Heft 491/2:2014-01, Berlin, Germany.
  16. Hua, X.G., Chen, Z.Q., Lei, X., Wen, Q. and Niu, H.W. (2019), "Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge", Smart Struct. Syst., Int. J., 23(6), 683-693. https://doi.org/10.12989/sss.2019.23.6.683
  17. Huang, W., Pei, M., Liu, X. and Lei, Y. (2020), "Design and construction of super-long span bridges in China: Review and future perspectives", Front. Struct. Civil Eng., 14(4) 803-838. https://doi.org/10.1007/s11709-020-0644-1
  18. Japan Road Association (2019), Specifications for Highway Bridges - Part I Common, Working Group for English Translation of the Specifications for Highway Bridges, https://iisee.kenken.go.jp/worldlist/31_Japan/31_Japan_2_HighwayBridge2020%20_2017Part_I_Common.pdf
  19. Kitagawa, M. (2004), "Technology of the Akashi Kaikyo Bridge", Struct. Control Health Monitor., 11(2), 75-90. https://doi.org/10.1002/stc.31
  20. Larsen, A., Esdahl, S., Andersen, J.E. and Vejrum, T. (2000), "Storebelt suspension bridge - vortex shedding excitation and mitigation by guide vanes", J. Wind Eng. Industr. Aerodyn., 88, 283-296. https://doi.org/10.1016/S0167-6105(00)00054-4
  21. Li, L. and Dai, G. (2010), "The research on live load model for High-Speed Passenger Railway Bridge", Proceedings of IABSE Symposium: Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas, Venice, Italy, September.
  22. Li, H., Ou, J., Zhang, X., Pei, M. and Li, N. (2015), "Research and practice of health monitoring for long-span bridges in the mainland of China", Smart Struct. Syst., Int. J., 15(3), 555-576. https://doi.org/10.12989/sss.2015.15.3.555
  23. Li, Z., Feng, D., Feng, M.Q. and Xu, X. (2017), "System identification of the suspension tower of Runyang Bridge based on ambient vibration tests", Smart Struct. Syst., Int. J., 19(5), 523-538. https://doi.org/10.12989/sss.2017.19.5.523
  24. Mao, J.X., Wang, H., Xun, Z.X. and Zou, Z.Q. (2017), "Variability analysis on modal parameters of Runyang Bridge during Typhoon Masta", Smart Struct. Syst., Int. J., 19(6), 653-663. https://doi.org/10.12989/sss.2017.19.6.653
  25. Meng, F., Yu, J., Alaluf, D., Mokrani, B. and Preumont, A. (2019), "Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation", Smart Struct. Syst., Int. J., 23(1), 15-29. https://doi.org/10.12989/sss.2019.23.1.015
  26. Niu, H., Chen, Z., Hua, X. and Zhang, W. (2018), "Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping", Smart Struct. Syst., Int. J., 22(6), 727-741. https://doi.org/10.12989/sss.2018.22.6.727
  27. Ohashi, M., Narui, S. and Fujii, Y. (1988), "Design of long span suspension bridges for combined highway and railway", IABSE Congress Report, 13.
  28. Ostenfeld, K.H. (2004), "The Storebaelt East Bridge", Struct. Control Health Monitor., 11(2), 125-139. https://doi.org/10.1002/stc.35
  29. Qin, S. and Gao, Z. (2017), "Developments and prospects of long-span high-speed railway bridge technologies in China", Engineering, 3, 787-794. https://doi.org/10.1016/j.eng.2017.11.001
  30. Rahbari, R., Niu, J., Brownjohn, M.W. and Koo, K.J. (2015), "Structural identification of Humber Bridge for performance prognosis", Smart Struct. Syst., Int. J., 15(3), 665-682. https://doi.org/10.12989/sss.2015.15.3.665
  31. Su, M., Dai, G., Marx, S., Liu, W. and Zhang, S. (2018), "A brief review of developments and challenges for high-speed rail bridges in China and Germany", Struct. Eng. Int., 29(2), 160-166. https://doi.org/10.1080/10168664.2018.1456892
  32. Tanaka, H., Ueda, T. and Matsushita, Y. (1998), "Aerodynamic stabilization for super long-span suspension bridges", IABSE Reports, pp. 421-426.
  33. Tateishi, K. (2022), "Activities of the Research Committee on Steel Bridges with Higher Resilience and Longer Service Life", Steel Construction Today and Tomorrow, 65.
  34. Technical Committee CEN/TC 250 (2021), "Structural Eurocodes", prEN 1991 2:2021.
  35. Wang, Y.W., Ni, Y.Q. and Wang, S.M. (2022), "Structural health monitoring of railway bridges using innovative sensing technologies and machine learning algorithms: a concise review", Intell. Transport. Infrastr., 1, 1-11. https://doi.org/10.1093/iti/liac009
  36. Wang, Z., Zhao, L., Chen, H., Fang, G., Li, K. and Ge, Y. (2023), "Flutter Control of Active Aerodynamic Flaps Mounted on Streamlined Bridge Deck Fairing Edges: An Experimental Study", Structural Control and Health Monitoring, Volume 2023, Article ID 9970603. https://doi.org/10.1155/2023/9970603
  37. Wong, K.Y. (2004), "Instrumentation and health monitoring of cable-supported bridges", Struct. Control Health Monitor., 11(2), 91-124. https://doi.org/10.1002/stc.33
  38. Wu, F., Feng, C. and Xia, Y. (2022), "A Thousand-Meter Scale Suspension Bridge in China", Struct. Eng. Int., 32(2) 247-251. https://doi.org/10.1080/10168664.2021.1975347
  39. Xia, H., Xu, Y.L. and Chan, T.H. (2000), "Dynamic Interaction of Long Suspension Bridges with Running Trains", J. Sound Vib., 237(2), 263-280. https://doi.org/10.1006/jsvi.2000.3027
  40. Yang, Y., Ge, Y., Zhou, R., Chen, S. and Zhang, L. (2020), "Aerodynamic countermeasure schemes of super long-span suspension bridges with various aspect ratios", Int. J. Struct. Stabil. Dyn., 20(5), 22-47. https://doi.org/10.1142/S0219455420500613
  41. Zhai, W., Xia, H., Cai, C., Gao, M., Li, X., Guo, X., Zhang, N. and Wang, K. (2013), "High-speed train-track-bridge dynamic interactions - Part I: theoretical model and numerical simulation", Int. J. Rail Transport., 1(1-2), 3-24. https://doi.org/10.1080/23248378.2013.791498
  42. Zhai, W., Han, Z., Chen, Z., Ling, L. and Zhu, S. (2019), "Train-track-bridge dynamic interaction: a state-of-the-art review", Vehicle Syst. Dyn., 57(7), 984-1027. https://doi.org/10.1080/00423114.2019. 1605085
  43. Zhang, X.G., Yuan, H. and Pei, M.S. (2009), "Introduction of key technologies in design of Sutong Yangtze River Highway Bridge", Highway, 5, 6-10. [in Chinese]
  44. Zhang, N., Ge, G., Xia, H. and Li, X. (2015), "Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers", Wind Struct., Int. J., 21(3), 311-329. https://doi.org/10.12989/was.2015.21.3.311
  45. Zhao, K.Y., Wang, H., Tao, T.Y., Gao, H. and Wu, T. (2022), "Parametric analysis on buffeting performance of a long-span high-speed railway suspension bridge", J. Cent. South Univ., 29, 2574-2588. https://doi.org/10.1007/s11771-022-5124-4
  46. Zhou, R., Ge, Y., Yang, Y., Liu, Q., Zhou, H. and Zhang, L. (2023a), "Effects of vertical central stabilizers on nonlinear windinduced stabilization of a closed-box girder suspension bridge with various aspect ratios", Nonlinear Dyn., 111, 9127-9143. https://doi.org/10.1007/s11071-023-08358-1
  47. Zhou, R., Lu, P., Gao, X., Ge, Y., Yang, Y. and Zhang, L. (2023b), "Role of moveable guide vane with various configurations in controlling the vortex-induced vibration of twin-box girder suspension bridges: An experimental investigation", Eng. Struct., 281, 115762. https://doi.org/10.1016/j.engstruct.2023.115762