DOI QR코드

DOI QR Code

Bone marrow stem cells incubated with ellipticine regenerate articular cartilage by attenuating inflammation and cartilage degradation in rabbit model

  • Mohammad Amjad Hossain (Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Soyeon Lim (Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University) ;
  • Kiran D. Bhilare (Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Md Jahangir Alam (Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Baicheng Chen (Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Ajay Vijayakumar (Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Hakyoung Yoon (Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Chang Won Kang (Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University) ;
  • Jong-Hoon Kim (Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University)
  • Received : 2023.05.12
  • Accepted : 2023.09.18
  • Published : 2023.11.30

Abstract

Background: Ellipticine (Ellip.) was recently reported to have beneficial effects on the differentiation of adipose-derived stem cells into mature chondrocyte-like cells. On the other hand, no practical results have been derived from the transplantation of bone marrow stem cells (BMSCs) in a rabbit osteoarthritis (OA) model. Objectives: This study examined whether autologous BMSCs incubated with ellipticine (Ellip.+BMSCs) could regenerate articular cartilage in rabbit OA, a model similar to degenerative arthritis in human beings. Methods: A portion of rabbit articular cartilage was surgically removed, and Ellip.+BMSCs were transplanted into the lesion area. After two and four weeks of treatment, the serum levels of proinflammatory cytokines, i.e., tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2), were analyzed, while macroscopic and micro-computed tomography (CT) evaluations were conducted to determine the intensity of cartilage degeneration. Furthermore, immuno-blotting was performed to evaluate the mitogen-activated protein kinases, PI3K/Akt, and nuclear factor-κB (NF-κB) signaling in rabbit OA models. Histological staining was used to confirm the change in the pattern of collagen and proteoglycan in the articular cartilage matrix. Results: The transplantation of Ellip.+BMSCs elicited a chondroprotective effect by reducing the inflammatory factors (TNF-α, PGE2) in a time-dependent manner. Macroscopic observations, micro-CT, and histological staining revealed articular cartilage regeneration with the downregulation of matrix-metallo proteinases (MMPs), preventing articular cartilage degradation. Furthermore, histological observations confirmed a significant boost in the production of chondrocytes, collagen, and proteoglycan compared to the control group. Western blotting data revealed the downregulation of the p38, PI3K-Akt, and NF-κB inflammatory pathways to attenuate inflammation. Conclusions: The transplantation of Ellip.+BMSCs normalized the OA condition by boosting the recovery of degenerated articular cartilage and inhibiting the catabolic signaling pathway.

Keywords

Acknowledgement

This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, Republic of Korea (grant number: HI18C0661). This research was also supported by a grant from the Basic Science Research Program administered through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education (2019R1A6A1A03033084).

References

  1. Greene MA, Loeser RF. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage. 2015;23(11):1966-1971. https://doi.org/10.1016/j.joca.2015.01.008
  2. McCulloch K, Litherland GJ, Rai TS. Cellular senescence in osteoarthritis pathology. Aging Cell. 2017;16(2):210-218. https://doi.org/10.1111/acel.12562
  3. Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. 2018;128(4):1229-1237. https://doi.org/10.1172/JCI95147
  4. Wodarz D. Effect of stem cell turnover rates on protection against cancer and aging. J Theor Biol. 2007;245(3):449-458. https://doi.org/10.1016/j.jtbi.2006.10.013
  5. Goessler UR, Bieback K, Bugert P, Heller T, Sadick H, Hormann K, et al. In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. Int J Mol Med. 2006;17(2):301-307. https://doi.org/10.3892/ijmm.17.2.301
  6. Ashkavand Z, Malekinejad H, Vishwanath BS. The pathophysiology of osteoarthritis. J Pharm Res. 2013;7(1):132-138. https://doi.org/10.1016/j.jopr.2013.01.008
  7. Kim JY, Lee SG, Chung JY, Kim YJ, Park JE, Koh H, et al. Ellipticine induces apoptosis in human endometrial cancer cells: the potential involvement of reactive oxygen species and mitogen-activated protein kinases. Toxicology. 2011;289(2-3):91-102. https://doi.org/10.1016/j.tox.2011.07.014
  8. Pandrangi SL, Chikati R, Chauhan PS, Kumar CS, Banarji A, Saxena S. Effects of ellipticine on ALDH1A1-expressing breast cancer stem cells--an in vitro and in silico study. Tumour Biol. 2014;35(1):723-737. https://doi.org/10.1007/s13277-013-1099-y
  9. Stiborova M, Manhartova Z, Hodek P, Adam V, Kizek R, Eckschlager T, et al. Cytotoxicity of and DNA adduct formation by ellipticine and its micellar form in human leukemia cells in vitro. Neuroendocrinol Lett. 2015;36 Suppl 1:22-28.
  10. Lee J, Lee CY, Park JH, Seo HH, Shin S, Song BW, et al. Differentiation of adipose-derived stem cells into functional chondrocytes by a small molecule that induces Sox9. Exp Mol Med. 2020;52(4):672-681. https://doi.org/10.1038/s12276-020-0424-y
  11. Latourte A, Kloppenburg M, Richette P. Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol. 2020;16(12):673-688. https://doi.org/10.1038/s41584-020-00518-6
  12. He L, He T, Xing J, Zhou Q, Fan L, Liu C, et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 2020;11(1):276.
  13. Zhou X, Liang H, Hu X, An J, Ding S, Yu S, et al. BMSC-derived exosomes from congenital polydactyly tissue alleviate osteoarthritis by promoting chondrocyte proliferation. Cell Death Dis. 2020;6(1):142.
  14. Ulivi V, Giannoni P, Gentili C, Cancedda R, Descalzi F. p38/NF-kB-dependent expression of COX-2 during differentiation and inflammatory response of chondrocytes. J Cell Biochem. 2008;104(4):1393-1406. https://doi.org/10.1002/jcb.21717
  15. Yan H, Duan X, Pan H, Holguin N, Rai MF, Akk A, et al. Suppression of NF-κB activity via nanoparticle-based siRNA delivery alters early cartilage responses to injury. Proc Natl Acad Sci U S A. 2016;113(41):E6199-E6208. https://doi.org/10.1073/pnas.1608245113
  16. Mengshol JA, Vincenti MP, Brinckerhoff CE. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 2001;29(21):4361-4372. https://doi.org/10.1093/nar/29.21.4361
  17. Hossain MA, Adithan A, Alam MJ, Kopalli SR, Kim B, Kang CW, et al. IGF-1 facilitates cartilage reconstruction by regulating PI3K/AKT, MAPK, and NF-kB signaling in rabbit osteoarthritis. J Inflamm Res. 2021;14:3555-3568. https://doi.org/10.2147/JIR.S316756
  18. Pelletier JP, Fernandes JC, Brunet J, Moldovan F, Schrier D, Flory C, et al. In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes. Arthritis Rheum. 2003;48(6):1582-1593. https://doi.org/10.1002/art.11014
  19. Tung JT, Arnold CE, Alexander LH, Yuzbasiyan-Gurkan V, Venta PJ, Richardson DW, et al. Evaluation of the influence of prostaglandin E2 on recombinant equine interleukin-1β-stimulated matrix metalloproteinases 1, 3, and 13 and tissue inhibitor of matrix metalloproteinase 1 expression in equine chondrocyte cultures. Am J Vet Res. 2002;63(7):987-993. https://doi.org/10.2460/ajvr.2002.63.987
  20. Daugaard R, Tjur M, Sliepen M, Lipperts M, Grimm B, Mechlenburg I. Are patients with knee osteoarthritis and patients with knee joint replacement as physically active as healthy persons? J Orthop Translat. 2018;14:8-15. https://doi.org/10.1016/j.jot.2018.03.001
  21. Hu J, Zhou J, Wu J, Chen Q, Du W, Fu F, et al. Loganin ameliorates cartilage degeneration and osteoarthritis development in an osteoarthritis mouse model through inhibition of NF-κB activity and pyroptosis in chondrocytes. J Ethnopharmacol. 2020;247:112261.
  22. Huang Y, Tan F, Zhuo Y, Liu J, He J, Duan D, et al. Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α. Aging (Albany NY). 2020;12(11):10931-10950. https://doi.org/10.18632/aging.103307
  23. Joosten LA, Helsen MM, Saxne T, van De Loo FA, Heinegard D, van Den Berg WB. IL-1 α β blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint inflammation. J Immunol. 1999;163(9):5049-5055. https://doi.org/10.4049/jimmunol.163.9.5049
  24. Pei Y, Harvey A, Yu XP, Chandrasekhar S, Thirunavukkarasu K. Differential regulation of cytokine-induced MMP-1 and MMP-13 expression by p38 kinase inhibitors in human chondrosarcoma cells: potential role of Runx2 in mediating p38 effects. Osteoarthritis Cartilage. 2006;14(8):749-758. https://doi.org/10.1016/j.joca.2006.01.017
  25. Montaseri A, Busch F, Mobasheri A, Buhrmann C, Aldinger C, Rad JS, et al. IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One. 2011;6(12):e28663.
  26. Hossain MA, Alam MJ, Kim B, Kang CW, Kim JH. Ginsenoside-Rb1 prevents bone cartilage destruction through down-regulation of p-Akt, p-P38, and p-P65 signaling in rabbit. Phytomedicine. 2022;100:154039.
  27. Hashimoto K, Oreffo RO, Gibson MB, Goldring MB, Roach HI. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rh
  28. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44(3):585-594. https://doi.org/10.1002/1529-0131(200103)44:3<585::AID-ANR107>3.0.CO;2-C
  29. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33-42. https://doi.org/10.1038/nrrheum.2010.196