DOI QR코드

DOI QR Code

Monitoring of Benzimidazole Resistance in Botrytis cinerea Isolates from Strawberry in Korea and Development of Detection Method for Benzimidazole Resistance

  • Geonwoo Kim (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Doeun Son (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Sungyu Choi (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Haifeng Liu (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Youngju Nam (Global Agro-Consulting Corporation) ;
  • Hyunkyu Sang (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University)
  • Received : 2023.10.27
  • Accepted : 2023.11.22
  • Published : 2023.12.01

Abstract

Botrytis cinerea is a major fungal plant pathogen that causes gray mold disease in strawberries, leading to a decrease in strawberry yield. While benzimidazole is widely used as a fungicide for controlling this disease, the increasing prevalence of resistant populations to this fungicide undermines its effectiveness. To investigate benzimidazole resistant B. cinerea in South Korea, 78 strains were isolated from strawberries grown in 78 different farms in 2022, and their EC50 values for benzimidazole were examined. As a result, 64 strains exhibited resistance to benzimidazole, and experimental tests using detached strawberry leaves and the plants in a greenhouse confirmed the reduced efficacy of benzimidazole to control these strains. The benzimidazole resistant strains identified in this study possessed two types of mutations, E198A or E198V, in the TUB2 gene. To detect these mutations, TaqMan probes were designed, enabling rapid identification of benzimidazole resistant B. cinerea in strawberry and tomato farms. This study utilizes TaqMan real-time polymerase chain reaction analysis to swiftly identify benzimidazole resistant B. cinerea, thereby offering the possibility of effective disease management by identifying optimum locations and time of application.

Keywords

Acknowledgement

This research was funded by the Rural Development Administration (Republic of Korea), grant number PJ01690602.

References

  1. Bardas, G. A., Myresiotis, C. K. and Karaoglanidis, G. S. 2008. Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology 98:443-450. https://doi.org/10.1094/PHYTO-98-4-0443
  2. Braun, P. G. and Sutton, J. C. 1987. Inoculum sources of Botrytis cinerea in fruit rot of strawberries in Ontario. Can. J. Plant Pathol. 9:1-5. https://doi.org/10.1080/07060668709501903
  3. Cubero, O. F., Crespo, A., Fatehi, J. and Bridge, P. D. 1999. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 216:243-249. https://doi.org/10.1007/BF01084401
  4. Davidse, L. C. and Flach, W. 1977. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J. Cell Biol. 72:174-193. https://doi.org/10.1083/jcb.72.1.174
  5. Droby, S. and Lichter, A. 2007. Post-harvest Botrytis infection: etiology, development and management. In: Botrytis: biology, pathology and control, eds. by Y. Elad, B. Williamson, P. Tudzynski and N. Delen, pp. 349-367. Springer, Dordrecht, Netherlands.
  6. Faretra, F. and Pollastro, S. 1993. Genetics of sexual compatibility and resistance to benzimidazole and dicarboximide fungicides in isolates of Botryotinia fuckeliana (Botrytis cinerea) from nine countries. Plant Pathol. 42:48-57. https://doi.org/10.1111/j.1365-3059.1993.tb02933.x
  7. Ha, H.-Y., Park, S.-E., You, A.-S., Gil, G.-H., Park, J.-E., Lee, I.-Y., Park, K.-W. and Ihm, Y.-B. 2016. Survey of pesticide use in leaf and fruit vegetables, fruits, and rice cultivation areas in Korea. Weed Turf. Sci. 5:203-212 (in Korean). https://doi.org/10.5660/WTS.2016.5.4.203
  8. Jeong, Y. K., Lee, J. G., Yun, S. W., Kim, H. T. and Yoon, Y. C. 2018. Field survey of greenhouse for strawberry culture: case study based on western Gyeongnam area. Prot. Hortic. Plant Factory 27:253-259 (in Korean). https://doi.org/10.12791/KSBEC.2018.27.3.253
  9. Kim, B. S., Choi, K. J. and Cho, K. Y. 1993. Responses to several fungicides of Botrytis cinerea isolates resistant to benzimidazole and dicarboximide fungicides. Korean J. Plant Pathol. 9:98-103 (in Korean).
  10. Korea Agro-Fisheries and Food Trade Information. 2023. Statistical information. URL https://www.kati.net/product/basisInfo.do?lcdCode=MD149 [10 July 2022].
  11. Kwak, Y., Min, J., Song, J., Kim, M., Lee, H. and Kim, H. T. 2017. Relationship of resistance to benzimidazole fungicides with mutation of β-tubulin gene in Venturia nashicola. Res. Plant Dis. 23:150-158 (in Korean). https://doi.org/10.5423/RPD.2017.23.2.150
  12. LaMondia, J. A. and Douglas, S. M. 1997. Sensitivity of Botrytis cinerea from Connecticut greenhouses to benzimidazole and dicarboximide fungicides. Plant Dis. 81:729-732. https://doi.org/10.1094/PDIS.1997.81.7.729
  13. Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., Gredt, M. and Chapeland, F. 2002. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag. Sci. 58:876-888. https://doi.org/10.1002/ps.566
  14. Liu, Y. H., Yuan, S. K., Hu, X. R. and Zhang, C. Q. 2019. Shift of sensitivity in Botrytis cinerea to benzimidazole fungicides in strawberry greenhouse ascribing to the rising-lowering of E198A subpopulation and its visual, on-site monitoring by loop-mediated isothermal amplification. Sci. Rep. 9:11644.
  15. Mertely, J. C., Chandler, C. K., Xiao, C. L. and Legard, D. E. 2000. Comparison of sanitation and fungicides for management of Botrytis fruit rot of strawberry. Plant Dis. 84:1197-1202. https://doi.org/10.1094/PDIS.2000.84.11.1197
  16. Ministry of Agriculture, Food and Rural Affairs. 2022. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2021. URL https://www.mafra.go.kr/sn3hcv_v2023/skin/doc.html?fn=DCCEF896-0861-0B93-A310-451A2BC75F00.pdf&rs=/sn3hcv_v2023/atchmnfl/bbs/202308/ [24 November 2022].
  17. Moraes Bazioli, J., Belinato, J. R., Costa, J. H., Akiyama, D. Y., de Moraes Pontes, J. G., Kupper, K. C., Augusto, F., de Carvalho, J. E. and Fill, T. P. 2019. Biological control of citrus postharvest phytopathogens. Toxins 11:460.
  18. Nam, M. H., Kim, H. S., Lee, W. K., Gleason, M. L. and Kim, H. G. 2021. Control efficacy of gray mold on strawberry fruits by timing of chemical and microbial fungicide applications. Korean J. Hortic. Sci. Technol. 29:151-155 (in Korean).
  19. Paplomatas, E. J., Pappas, A. C. and Antoniadis, D. 2004. A relationship among fungicide-resistant phenotypes of Botrytis cinerea based on RAPD analysis. J. Phytopathol. 152:503-508. https://doi.org/10.1111/j.1439-0434.2004.00887.x
  20. Park, I. C., Yeh, W. H. and Kim, C. H. 1992. Occurrence of isolates of Botrytis cinerea resistant to procymidone, vinclozolin and benomyl in strawberry fields in Korea. Korean J. Plant Pathol. 8:41-46.
  21. Paul, N. C., Park, S., Liu, H., Lee, J. G., Han, G. H., Kim, H. and Sang, H. 2021. Fungi associated with postharvest diseases of sweet potato storage roots and in vitro antagonistic assay of Trichoderma harzianum against the diseases. J. Fungi 7:927.
  22. Ritz, C., Baty, F., Streibig, J. C. and Gerhard, D. 2015. Dose-response analysis using R. PLoS ONE 10:e0146021.
  23. Schuepp, H. and Kung, M. 1981. Stability of tolerance to MBC in populations of Botrytis cinerea in vineyards of northern and eastern Switzerland. Can. J. Plant Pathol. 3:180-181. https://doi.org/10.1080/07060668109501941
  24. Stromeng, G. M., Hjeljord, L. G. and Stensvand, A. 2009. Relative contribution of various sources of Botrytis cinerea inoculum in strawberry fields in Norway. Plant Dis. 93:1305-1310. https://doi.org/10.1094/PDIS-93-12-1305
  25. Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  26. Yarden, O. and Katan, T. 1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83:1478-1483. https://doi.org/10.1094/Phyto-83-1478