DOI QR코드

DOI QR Code

Weather Conditions Drive the Damage Area Caused by Armillaria Root Disease in Coniferous Forests across Poland

  • Pawel Lech (Forest Research Institute, Department of Forest Management) ;
  • Oksana Mychayliv (Ukrainian National Forestry University) ;
  • Robert Hildebrand (Forest Research Institute, Department of Forest Management) ;
  • Olga Orman (Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture in Krakow)
  • 투고 : 2023.07.23
  • 심사 : 2023.09.12
  • 발행 : 2023.12.01

초록

Armillaria root disease affects forests around the world. It occurs in many habitats and causes losses in the infested stands. Weather conditions are important factors for growth and development of Armillaria species. Yet, the relation between occurrence of damage caused by Armillaria disease and weather variables are still poorly understood. Thus, we used generalized linear mixed models to determine the relationship between weather conditions of current and previous year (temperature, precipitation and their deviation from long-term averages, air humidity and soil temperature) and the incidence of Armillaria-induced damage in young (up to 20 years old) and older (over 20 years old) coniferous stands in selected forest districts across Poland. We used unique data, gathered over the course of 23 years (1987-2009) on tree damage incidence from Armillaria root disease and meteorological parameters from the 24-year period (1986-2009) to reflect the dynamics of damage occurrence and weather conditions. Weather parameters were better predictors of damage caused by Armillaria disease in younger stands than in older ones. The strongest predictor was soil temperature, especially that of the previous year growing season and the current year spring. We found that temperature and precipitation of different seasons in previous year had more pronounced effect on the young stand area affected by Armillaria. Each stand's age class was characterized by a different set of meteorological parameters that explained the area of disease occurrence. Moreover, forest district was included in all models and thus, was an important variable in explaining the stand area affected by Armillaria.

키워드

과제정보

The study described in the article was performed under project titled "Support Platform of Operational Decision Making Depending on Weather Conditions (PROZA)", co-financed by the European Union from the European Regional Development Fund through the Innovative Economy Operational Program (grant no. UDA=POIG.01.03.01-00-140/08-00).

참고문헌

  1. Auguie, B. 2017. gridExtra: miscellaneous functions for "grid" graphics. URL https://CRAN.R-project.org/package=gridExtra [23 July 2023]. 
  2. Bates, D., Machler, M., Bolker, B. and Walker, S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1-48.  https://doi.org/10.18637/jss.v067.i01
  3. Bendz Hellgren, M. and Stenlid, J. 1995. Long-term reduction in the diameter growth of butt rot affected Norway spruce, Picea abies. For. Ecol. Manag. 74:239-243.  https://doi.org/10.1016/0378-1127(95)03530-N
  4. Bloomberg, W. J. and Morrison, D. J. 1989. Relationship of growth reduction in Douglas-fir to infection by Armillaria root disease in southeastern British Columbia. Phytopathology 79:482-487.  https://doi.org/10.1094/Phyto-79-482
  5. Bulletin of the State Hydrological and Meteorological Service. 1986-2009. Instytut Meteorologii i Gospodarki Wodnej. URL https://dane.imgw.pl/data/dane_pomiarowo_obserwacyjne/ [23 July 2023] (in Polish). 
  6. Choi, S.-W. 2003. The relationship between local distribution and abundance of butterflies and weather factors. Korean J. Ecol. 26:199-202.  https://doi.org/10.5141/JEFB.2003.26.4.199
  7. Coakley, S. M., Line, R. F. and McDaniel L. R. 1988. Predicting stripe rust severity on winter wheat using an improved method for analyzing meteorological and rust data. Phytopathology 78:543-550.  https://doi.org/10.1094/Phyto-78-543
  8. Coetzee, M. P. A., Wingfield, B. D. and Wingfield, M. J. 2018. Armillaria root-rot pathogens: species boundaries and global distribution. Pathogens 7:83. 
  9. Collective Work. 1988-2010. Short-term forecast of occurrence of most important insect pests and infectious diseases of forest trees in Poland. Instytut Badawczy Lesnictwa, Sekocin Stary, Poland (in Polish). 
  10. Cruickshank, M. 2020. Response of planted and natural Douglas fir tree roots infected with Armillaria root disease: lesion type, time-to-callus, infection timing, and influence of site and environmental factors on lesion formation. Can. J. Plant Pathol. 42:377-389.  https://doi.org/10.1080/07060661.2019.1686067
  11. Cruickshank, M. G. 2011. Yield reduction in spruce infected with Armillaria solidipes in the southern interior of British Columbia. For. Pathol. 41:425-428.  https://doi.org/10.1111/j.1439-0329.2010.00690.x
  12. Cruickshank, M. G., Morrison D. J. and Lalumiere A. 2011. Site, plot, and individual tree yield reduction of interior Douglas-fir associated with non-lethal infection by Armillaria root disease in southern British Columbia. For. Ecol. Manag. 261:297-307.  https://doi.org/10.1016/j.foreco.2010.10.023
  13. Duggar, B. M. 1909. Fungous diseases of plants. Ginn and Co., New York, NY, USA, pp. 1-508. 
  14. Filip, G. M., Maffei, H. M., Chadwick, K. L. and Max, T. A. 2010. Armillaria root disease-caused tree mortality following silvicultural treatments (shelterwood or group selection) in an Oregon mixed-conifer forest: insights from a 10-year case study. Western J. Appl. For. 25:136-143.  https://doi.org/10.1093/wjaf/25.3.136
  15. Franceschi, V. R., Krokene, P., Christiansen, E. and Krekling, T. 2005. Anatomical and chemical defences of conifer bark against bark beetles and other pests. New Phytol. 167:353-376.  https://doi.org/10.1111/j.1469-8137.2005.01436.x
  16. Gaumann, E. 1950. Principles of plant infection. Hafner Publishing Co., New York, NY. 543 pp. 
  17. Goheen, D. J. and Otrosina W. J. 1998. Characteristics and consequences of root diseases in forests of Western North America. In: User's guide to the western root disease model, version 3.0, General Technical Report PSW-GTR 165, ed. by S. J. Frankel, pp. 3-8. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA, USA. 
  18. Guide to Forest Protection. 1988. Panstwowe Wydawnictwa Rolnicze i Lesne (State Agricultural and Forestry Publishing House), Warszawa, Poland. 304 pp (in Polish). 
  19. Guillaumin, J. J., Lung, B., Romagnesi, H., Marxmuller, H., Lamoure, D., Durrier, G., Berthelay S. and Mohamed, C. 1985. Systematique des Armillaria du groupe Mellea. Consequences phytopathologiques. Eur. J. For. Pathol. 15:268-277.  https://doi.org/10.1111/j.1439-0329.1985.tb01099.x
  20. Guillaumin, J.-J., Mohammed, C., Anselmi, N., Courtecuisse, R., Gregory, S. C., Holdenrieder, O., Intini, M., Lung, B., Marxmuller, H., Morrison, D., Rishbeth, J., Termorshuizen, A. J., Tirro, A. and Van Dam, B. 1993. Geographical distribution and ecology of the Armillaria species in Western Europe. Eur. J. For. Pathol. 23:321-341.  https://doi.org/10.1111/j.1439-0329.1993.tb00814.x
  21. Kaliszewski, A., Lech, P. and Oszako, T. 2007. The occurrence of, and economic losses caused by Armillaria in the Western Carpathian Mts. Acta Mycol. 42:219-233.  https://doi.org/10.5586/am.2007.025
  22. Keca, N. 2005. Characteristics of Armillaria species development and their growth at different temperatures. Glasnik Sumarskog Fakulteta 91:149-162 (in Serbian).  https://doi.org/10.2298/GSF0591149K
  23. Kile, G. A., Guillaumin, J. J., Mohammed, C. and Watling, R. 1994. Biogeography and pathology of Armillaria. In: Proceedings of the 8th IUFRO Conference on Root and Butt Rots, eds. by M. I. Johansson and J. Stenlid, pp. 411-436. Swedish University of Agricultural Sciences, Uppsala, Sweden. 
  24. Kile, G. A., McDonald, G. I. and Byler, J. W. 1991. Ecology and disease in natural forests. In: Armillaria root disease, USDA Forest Service Agriculture Handbook No. 691, eds. by C. G. I. Shaw G. A. Kile, pp. 102-121. United States Department of Agriculture, Washington, DC, USA. 
  25. Kile, G. A. and Watling, R. 1983. Armillaria species from southeastern Australia. Trans. Br. Mycol. Soc. 81:129-140.  https://doi.org/10.1016/S0007-1536(83)80212-5
  26. Kliejunas, J. T. 2011. A risk assessment of climate change and the impact of forest diseases on forest ecosystems in the Western United States and Canada. General Technical Report PSWGTR-236. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA, USA. 70 pp. 
  27. Kolb, T. E., Fettig, C. J., Ayres, M. P., Bentz, B. J., Hicke, J. A., Mathiasen, R., Stewart, J. E. and Weed, A. S. 2016. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 380:321-334.  https://doi.org/10.1016/j.foreco.2016.04.051
  28. Kolk, A., Lech, P. and Sierota, Z. 1996. Okreslenie stref zagrozen lasow polski przez czynniki biotyczne. Biblioteka Monitoringu Srodowiska, PIOS, Warszawa, Poland. 136 pp. 
  29. Kubiak, K., Zolciak, A., Damszel, M., Lech, P. and Sierota, Z. 2017. Armillaria pathogenesis under climate changes. Forests 8:100. 
  30. La Porta, N., Capretti, P., Thomsen, I. M., Kasanen, R., Hietala, A. M. and Von Weissenberg, K. 2008. Forest pathogens with higher damage potential due to climate change in Europe. Can. J. Plant Pathol. 30:177-195.  https://doi.org/10.1080/07060661.2008.10540534
  31. Landau, S., Mitchell, R. A. C., Barnett, V., Colls, J. J., Craigon, J. and Payne, R. W. 2000. A parsimonious, multiple-regression model of wheat yield response to environment. Agric. For. Meteorol. 101:151-166.  https://doi.org/10.1016/S0168-1923(99)00166-5
  32. Lech, P. 2003. Threat caused by root rot diseases to Norway spruce stands in Poland as reviled by the results of the phytopathological monitoring of commercial forests. In: Norway spruce stands: status, problems, perspectives, ed. by A. Grzywacz A, pp. 92-107. Polskie Towarzystwo Lesne, UstronJaszowiec, Poland (in Polish). 
  33. Lech, P. and Zolciak. A. 2006a. Conditions of Armillaria root rot occurrence in the forests of the Beskid Zywiecki Mountains. For. Res. Pap. 2:33-49 (in Polish). 
  34. Lech, P. and Zolciak, A. 2006b. Growth of Scots pine seedlings and Armillaria ostoyae rhizomorphs under elevated air CO2 concentration conditions. For. Res. Pap. 4:64-67 (in Polish). 
  35. Lech, P. and Zolciak, A. 2017. Influence of elevated CO2 concentrations on the growth of Armillaria ostoyae (Romagn.) Herink rhizomorphs in vitro. For. Res. Pap. 78:191-197 (in Polish).  https://doi.org/10.1515/frp-2017-0021
  36. Lesowskij, A. W. and Martyszeczkina, A. F. 1978. Study of some factors affecting the resistance of oak forest stands to pathogens. For. Agro-forest Melior. 51:48-55 (in Russian). 
  37. Livingstone, W. H., Cromell, W. H. and French, D. W. 1982. Armillariella mellea infection in balsam fir plantation in north central Minnesota. Minnesota Forestry Research Notes, No. 281. University of Minnesota, College of Forestry, St. Paul, MN, USA. 2 pp. 
  38. Lockman, I. B. and Kearns, H. S. J. 2016. Forest root diseases across the United States. General Technician Report RMRSGTR-342. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT, USA. 55 pp. 
  39. Ludecke D, 2021. sjPlot: data visualization for statistics in social science R package version 2.8.10. R Foundation for Statistical Computing, Vienna, Austria. 
  40. Meijerink, A. M. J., de Brouwer, H. A. M., Mannaerts, C. M. and Valenzuela, C. R. 1994. Introduction to use of geographic information systems for practical hydrology: IHP - IV M 2.3. ITC Publication, Vol. 23. International Institute for Geo-Information Science and Earth Observation, Enschedem Netherlands. 
  41. Mihail, J. D., Bruhn, J. N. and Leininger, T. D. 2002. The effects of moisture and oxygen availability on rhizomorph generation by Armillaria tabescens in comparison with A. gallica and A. mellea. Mycol. Res. 106:697-704.  https://doi.org/10.1017/S0953756202005920
  42. Murray, M. P. and Leslie, A. 2021. Climate, radial growth, and mortality associated with conifer regeneration infected by root disease (Armillaria ostoyae). For. Chronicle 97:43-51.  https://doi.org/10.5558/tfc2021-006
  43. Mychayliv, O. 2011. Threat of forest stands caused by Armillaria in relation to weather condition. Sci. Bull. UNFU 21:61-67 (in Ukrainian). 
  44. Mychayliv, O. and Malecka, M. 2012. Relations between the area of root rot diseases occurrence (Heterobasidion annosum and Armillaria spp.) and selected weather components in last 35 years in Poland. In: Proceeding of the IUFRO XIII International Conference on Root and Butt Root of Forest Trees, eds. by P. Capretti, C. Comparini, M. Garbelotto, N. La Porta and A. Santini, pp. 209-214. Firenze University Press, Firenze, Italy. 
  45. Pavlov, I. N. 2015. Biotic and abiotic factors as causes of coniferous forests dieback in Siberia and Far East. Contemp. Probl. Ecol. 8:440-456.  https://doi.org/10.1134/S1995425515040125
  46. Pearce, M. H. and Malajczuk, N. 1990. Factors affecting the growth of Armillaria luteobubalina rhizomorphs in soil. Mycol. Res. 94:38-48.  https://doi.org/10.1016/S0953-7562(09)81262-8
  47. R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 
  48. Rishbeth, J. 1968. The growth rate of Armillaria mellea. Trans. Br. Mycol. Soc. 51:575-586.  https://doi.org/10.1016/S0007-1536(68)80027-0
  49. Rishbeth, J. 1972. Resistance to fungal pathogens of tree roots. Proc. R. Soc. B Biol. Sci. 181:333-351. 
  50. Rishbeth, J. 1978. Effects of soil temperature and atmosphere on growth of Armillaria rhizomorphs. Trans. Br. Mycol. Soc. 70:213-220.  https://doi.org/10.1016/S0007-1536(78)80033-3
  51. Robinson, R. M. and Morrison, D. J. 2001. Lesion formation and host response to infection by Armillaria ostoyae in the roots of western larch and Douglas-fir. For. Pathol. 31:371-385.  https://doi.org/10.1046/j.1439-0329.2001.00260.x
  52. Roy, B. A., Gusewell, S. and Harte, J. 2004. Response of plant pathogens and herbivores to a warming experiment. Ecology 85:2570-2581.  https://doi.org/10.1890/03-0182
  53. Sakamoto, Y. 2018. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 32:236-248.  https://doi.org/10.1016/j.fbr.2018.02.003
  54. Sharma-Poudyal, D. and Chen, X. M. 2011. Models for predicting potential yield loss of wheat caused by stripe rust in the U.S. Pacific Northwest. Phytopathology 101:544-554.  https://doi.org/10.1094/PHYTO-08-10-0215
  55. Shaw, C. G. 3rd and Kile, G. A. 1991. Armillaria root disease. Agricultural Handbook No. 691. U.S. Department of Agriculture, Forest Service, Washington, DC, USA. 233 pp. 
  56. Shaw, C. G. 3rd and Toes, E. H. A. 1977. Impact of Dothistroma needle blight and Armillaria root rot on diameter growth of Pinus radiata. Phytopathology 67:1319-1323.  https://doi.org/10.1094/Phyto-67-1319
  57. Sierota, Z., Malecka, M. and Stocka, T. 2003. Short-term forecast of the occurrence of major pests and infectious diseases of forest trees in 2002. Instytut Badawczy Lesnictwa, Sekocin Stary, Poland. 105 pp. (in Polish). 
  58. Smith, R. S. 1984. Root disease-caused losses in the commercial coniferous forests of the western United States. USDA Forest Service, Forest Pest Management Methods Application Group. Fort Collins, CO, USA. 21 pp. 
  59. Smith, A. M. and Griffin, D. M. 1971. Oxygen and the ecology of Armillaria elegans Heim. Aust. J. Biol. Sci. 24:213-262.  https://doi.org/10.1071/BI9710231
  60. Stevens, R. B. 1960. Cultural practices in disease control. In: Plant pathology: an advanced treatise, Vol. 3, eds. by J. G. Horsfall and A. E. Dimond, pp. 357-429. Academic Press, New York, NY, USA. 
  61. Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., Worrall, J. J. and Woods, A. J. 2011. Climate change and forest diseases. Plant Pathol. 60:133-149.  https://doi.org/10.1111/j.1365-3059.2010.02406.x
  62. Szubin, W. I. 1976. Fructification of Armillariella mellea (Vahl ex Fr.) Karst in the North-West of the European part of the USSR. Mycol. Phytopathol. 10:128-133 (in Russian). 
  63. Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, NY, USA. 
  64. Wu, B. M., Subbarao, K. V. and van Bruggen, A. H. C. 2005. Analyses of the relationships between lettuce downy mildew and weather variables using geographic information system techniques. Plant Dis. 89:90-96.  https://doi.org/10.1094/PD-89-0090
  65. Zolciak, A. 1999. The occurrence of species from the Armillaria (Fr.: Fr.) Staude genus in forests in Poland. For. Res. Pap. A 890:29-40 (in Polish). 
  66. Zolciak, A. 2003. Distribution of the Armillaria species and their host plants in Poland. For. Res. Pap. 3:7-22 (in Polish).