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CONSTRUCTION OF AN EIGHT DIMENSIONAL
NONALTERNATIVE, NONCOMMUTATIVE ALGEBRA

YOUNGKWON SONG

ABSTRACT. The purpose of this article is to construct a unital 8
dimensional hypercomplex number system Hg that is neither alter-
native nor commutative unlike the octonions by means of the uni-
tal 4 dimensional, commutative, and nonassociative hypercomplex
number system H*. We also establish some algebraic properties
related to H and compare to those of octonions.

1. Introduction

Number systems R C C C H C O C --- can be extended from the
previous number system. But, H € O C --- doesn’t guarantee the
commutative property. In [5], we introduced the commutative number
systems.

Properties of quaternions and matrices of quaternions was published
[6], but the noncommutativity was a big obstacle to expand the the-
ory. In 1892, Segre introduced commutative quaternions [3] and various
properties about commutative quaternions have been established [1,2,3].
Also, we introduced modified 4 dimensional commutative quaternions
H* which is not associative [4].

As is well known, octonions O was constructed by means of Cayley-
Dickson construction with quaternions H. Note that O is a unital 8
dimensional, nonalternative, noncommutative, division algebra.

Recall the 4 dimensional, nonassociative, commutative quaternions
H*.
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DEFINITION 1.1. ([4]) Let
H* = {ap + a1i + azj + ask | ap,a1,a2,a3 € R, i,j,k ¢ R}, where
P=k=—1, =1, ij=ji=k, jk=Fkj=—i, ki=1ik=].
Then, H* is a unital 4 dimensional, nonassociative, commutative Zso-

graded algebra. Moreover, H* is neither an alternative algebra nor a
division algebra.

In this paper, we will construct a unital 8 dimensional, nonalterna-
tive, noncommutative hypercomplex number system Hg by means of the
algebra H*.

2. Eight dimensional nonalternative, noncommutative alge-
bra

In this section, we will construct a unital 8 dimensional nonalterna-
tive, noncommutative, nondivision algebra by using the 4 dimensional
nonalternative, commutative, nondivision algebra H*.

Let a = ag+aii+asj+ask € H* for some ag, a1, as,a3 € R. Instead
of defining the conjugate of &« € H* by ag — a1i — asj — ask, we simply
define the conjugate a(!) of av as follows:

DEFINITION 2.1. Let a = ag 4+ a1t 4+ aoj + azsk € H* for some
ao, a1, as, a3 € R. Then, we define oY) = ag — a1i — asj + ask as the
conjugate of a.

Note that o = a1 + ask for some aq,as € C and
oM = (ag — ayi) + (a3 — agi)k = a1 + azk,

where a3 is the complex conjugate of oy, t = 1, 2.
The conjugate is an involution satisfying the following facts.

PROPOSITION 2.2. Let o, B € H*. Then,
(1) @) = o if and only if o € R.
(2) () = q.
(3) (a+ B =al) + 50,
(4) (aa)V) = aaV) for all a € R.
(5) (aB)V) = oM M),
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Starting with the unital 4 dimensional, nonassociative, commutative,
nondivision Zs-graded algebra H*, a unital 8 dimensional nonalterna-
tive, noncommutative, nondivision Zs-graded algebra Hg is constructed
as follows:

DEFINITION 2.3. Let Hf = {(«, B)|a, B € H*} and define the opera-
tions on the set Hg as follows:
(@, B) + (v;m) = (@ +7,8+n)
a(a, B) = (ac, afp)
(@, 8)(7,m) = (ay = By, an + By V)

for all elements (o, 3), (v,n) € Hi and a € R.

PROPOSITION 2.4. H{ is a unital 8 dimensional nonalternative, non-
commutative, and nondivision algebra.

Proof. Obviously, the set B = {(1,0), (i,0), (4, 0), (k,0), (0,1), (0,4), (0, 1), (0, k) }
is a basis of Hg. Note that
ED GG} = (63— i +J<—z>> (m)( L ko1
= (i(=14Fk) —j(=1—k),i(=1—k)+j(-1+k))
Thus, Hg is not alternative. Also, Hg is not commutative since
(Ov 1)(07 Z) = (i’ 0) 7& (_iv 0) = (Ov Z)(Oa 1)
To show H{ is not a division algebra, consider the element (1+j,0) €
Hg. Then,
(1+4,0)(a, 8) = (1 + fa, (1+5)8Y) = (1,0)
implies that
(T+ja=1 (1+5)s0 =0
If we let o = ag + a1i + agj + ask and B8 = by + b1i + baj + bsk, then
ap+as =1, ag —a3=0, ap+a2 =0, a; + a3z =0,
which is impossible. Thus, the element (1 + j,0) has no multiplicative

inverse. Consequently, HZ is a unital 8 dimensional, nonalternative,
noncommutative, and nondivision algebra. O

The multiplication table of basis members of the algebra Hg is as
follows:
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(0,4),

- (.77 0)7 €4 = (k70)7 €5 = (071>7 €6 =
0,%). Then we have

= (Za 0)7 €3
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THEOREM 2.5. Let Ry and Ry be two sets defined by

5

E aepeqeres | a € R

p7q7r7s

} ’ Rl - {
Moreover, Hg is a Zo-graded algebra.

1

Ry = Z aepeqeres | a € R
p7q7r7S:
Then, Rqy

= H}.

H* and R,

>~

The Zs-graded algebra Hj is not alternative, but the subset

satisfies similar property.
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THEOREM 2.6. Let V = {2225 apepla, € R,p=5,6,7, 8}. Then,

(epepleq = eplepeq) or  (epep)eq = —ep(epeq)
for all ep,eq € Ry, 5 < p,q <8.

Proof. The proof is straightforward.

(eses)eq = —es = es(eses), (eses)er = —er = es(eser), (eses)es = —eg = es(eses)
(6666)65 = —€é5 = 66(6665)’ (6666)67 = —er7, 66(6667) = e, (6666)68 = —é€g, 66(6668) = €g
(erer)es = es = er(eves), (erer)es = eq, er(eres) = —eq, (erer)eg = eg, er(ereg) = —eg,

(6868)65 =ée5 = 68(6865)a (6868)66 =€ = 68(6866), (6868)67 =er = 68(6867)

O]

Now, we will construct a real matrix representation of elements in
*
Hg.

LEMMA 2.7. Let o, 8 € H* and let o = ag + a1i + asj + ask, B =
bo + b1t + boj + bsk. Then,

(o, 5)(1,0) (a, B) = (ap + a1i + azj + ask, by + b1i + baj + bsk)
(o, B)(i,0) = (Oﬂ BiM)) = (ai, —Bi)
= ( a1+a02+a3]+a2k by — boi — bsj — bak)
(., 3)(5,0) = (aj,8iV) = (e, —Bj)
= (ag—agz—i—ao]—}—alk —bo + b3t — byj —blk‘)
(a, B)(k,0) = (ak,pkM)) = (ak,Bk)
= (- a3—a22+a1]+aok —bs — bai + b1j + bok)
(o, 8)(0,1) = (=p ) (=bo — b1i — baj — bsk, ag + a1i + azj + ask)
(., 8)(0,4) = (=Bi", i) = (Bi, i)
= (- bl +bol+bsj + bok, —a1 + agi + azj + axk)
(@, 8)(0,5) = (=BiY,aj) = (Bj, o)
= (bg—b32+b0]+b1k as — azi + apj + ark)
(o, 8)(0,k) = (=BkY, ak) = (—Bk,ak)
= (b3 —|— bQ'L —b1j — bok, —as — a2t + a1j + aok)

Define the map ¢(!) : H — Mgyxg(R) by
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ag —aj a9 —as —bo —b1 b2 b3

al ap —az —ag —b1 bo —b3 bg
ag az ap a1 —by b3 by —by
) _ | as a2 a a —-bs b2 b1 —bo
¢ (Oé, ﬂ) o bo b1 *bQ *bg agn —ai a9 —as
b1 *bg b3 *bg al ao —asz —ag

by —bz3 —bp b1 a2 a3 ay a1
bs —by —bi by a3 ax a1 ao

for all elements (o, 3) € HS. Then,

_( 9l =4 (PG
¢(1)(a,5) - < ¢1(15)G1 ¢11(a) ! ) ’

where
ayg —ai a —as 1 0 0 0
o ai a —a3 —ag . 0 —1 0 0
qbl (Oé) = as a3 ag ay and Gl — 0 0 -1 0
az  a ai ag 0 O 0 1

THEOREM 2.8. Let ay,B: € H*, t = 1,2 and a € R. Then,

(1) ¢W(a(an, b)) = apM (au, Br).

(2) (a1 + az, b1 + B2) = ¢ (ax, 1) + ¢V (az, B2).

(3) ¢ ((an, B1)(azfa)) # ¢V (ar, B1)¢) (ag, B2) in general.
Proof. (1) and (2) are obvious.

For (3), ¢1V((0,1)(0,1)) = ¢V ((—1,0)) = —Is # ¢(0,1)¢1) (0, 1).
O

THEOREM 2.9. Let o, 8 € H* and let a = ag + a1i + asj + ask,
B =bo + b1i + baj + bsk. Then,
(1) If ¢1(a) is invertible if and only if $(V)(a,0) is invertible.
(2) If ¢1(B) is invertible if and only if $1)(0, B) is invertible.
(3) If ¢V (av, B) is invertible and ¢ (o)) = 0, then ¢y (f) is invertible.
(4) If ¢ (v, B) is invertible and ¢1(B) = 0, then ¢ («) is invertible.
(5) tr(¢M (o, B)) = 8ag = 8Re(ar) = 2tr(¢1(a)).

)
)
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Proof. (1) If ¢1(«) is invertible, then
—1 -1
(a0 ¢1() @) L ¢ (o) @ D0 0
¢ (a,0) ( 0 d’l(a)_l 8 o) d’l(a)_l ¢ (a,0)

and thus ¢(!)(a,0) is invertible.
Conversely, if (1) (a,0) is invertible, then

( $1(a) O ) ( Cni Cr2 > L ( Cn Cri2 ) ( $1(a) O )
O ¢i1(a) Co1 O 8 Co1 O O  ¢1(a)
for some C1,Cio,Co1,Cy € M4><4(R). Thus, (;51(01)011 = I and ¢1(Oz)

is invertible.

(2) If ¢1(p) is invertible, then
(1) ) Gyl (8) ) _
¢ (Oaﬁ) ( _G;1¢1(6)—1 0 *IS

and thus ¢(1)(0, B) is invertible.
Conversely, if (1) (0, 3) is invertible, then

) —$1(B)G1 Du Dip '\ _ Is
$1(B)G1 O D31 Do
for some D1y, D12, Da1, D2y € Myx4(R). Thus, ¢1(8)G1D12 = Iy and

¢1(B) is invertible.

(3) If (M (e, B) is invertible and ¢y (a) = 0, then ¢(1)(0, B) is invertible.
Thus, by (2), ¢1(8) is invertible.

(4) If oM (e, B) is invertible and ¢1(8) = 0, then ¢V (a,0) is invertible.
Thus, by (1), ¢1(«) is invertible.

(5) is obvious by the definition of ¢(1)(a, 3). O

3. Matrices in M, (HZ)

Let M)+ My (HE) — Mgpxsn(R) be the map defined by () (A4) =
Ca where A = (Ast)nxn7 Ast = (asta ﬁst)v C= (Cst)8n><8n7 and

B B d1(ast)  —¢1(Bst)G
Con = 0 (Au) = < 260G i) >

the (s,t) — th 8 x 8 block matrix.
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DEFINITION 3.1. Let A, B € My x,(Hg). Then, the 8n x 8n matrix
(D (A) is called the adjoint matrix of A.

DEFINITION 3.2. Let A, B € My xn(Hg). Then, we define the deter-
minant of the matrix A by the determinant of 1(1)(A).

THEOREM 3.3. Let A, B € M, xn(Hg). Then,

(1) M (@A) = ayp(V(A) for all a € R.

(2) v (A+ B) = yW(A4) +41(B).

(3) pU(AB) # M (A)p (B ) in general.

(4) det(aA) = a®" det(A).

(5) det(AB) # det(A) det(B) for n > 2 in general.

Proof. Let A = (Ast)nxn, Ast = (ast, Bst), B = (Bst)nxn, Bst =
(’Yst, 5st) for some v, Bst, Vst, Ost € H§- Then,

(1) The (s,t) — th 8 x 8 block matrix of 1)) (aA) is
¢(1)(aAst) = ¢(1)(a(ast,5st)) = ¢(1)(aastv aBst) = a¢(1)(asta Bst)
= apM(Ay)
Since the (s,t) — th 8 x 8 block matrix of ay(V(A) is apM (Ag), we
have ¥ (ad) = ayp(MV (A).

(2) The (s,t) — th 8 x 8 block matrix of ") (A + B) is

¢(1)(Ast + By) = ¢(1)(Oést + Vst Bst + Ost)
_ ¢1 (ast + 'Vst) _gbl(ﬁst + 551‘, Gl )

¢1 (ﬁst =+ 5st)G1 le Qg + 'YSt

_ d1(ast)  —d1(Bst) G1 ¢ (vst)  —01(6s¢)G1 )

B 1(Bst) G ¢1 ast) 1 O1(vst)

= ¢ &) (a8t7 5815) + (b ’Yst? 1 (1 st)

th 8 x 8 block matrix of 1/) A) (1)

which is the (s,t) —
(3) Let A = (i, 0)I, and B = (5,0)I,,. Then, AB = (k,0)I,, and
W) = (0, ¢(1) CZG(Q()(Z ,0), (4,0), - a(%?)))) 510G
_ —$1 1(2)  —91(0)Gy
- dwg o) ( e o))

( | G
= diag O( ¢10Z- v“”<¢1(52) ¢>1?i), >>
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$W(B) = YW((j,0)L,) = v (diag((4,0), (7,0), -, (j,0)))
— diag $1(4) —¢1(0)G1) < $1(4)  —¢1(0)Gy ))
$1(0)0G1  ¢1(J) T\ 1(0)Gr 91()),
¢»(j) O ) < '

w(l)(AB) - w(l)((k7 O)ITL) - w(l)(diag((ka 0)7 (ka 0)7 ) (kv )))
1

0
= diag 1(k) ¢1<0>G1> ( (k) —¢1(0)Gy ))
¢1EO;G1 ¢1(k) ’ (’ | $1(0)G1  ¢1(k),
- di ¢1(k) O (k) O
= diag 10 5 06) >7 7( 10 i ))

Since ¢1(i)¢1(7) # ¢1(k), we have p1(AB) # M (A)y (B

(4) det(aA) = det(pM(aA)) = det(arpM(A)) = a®" det (1)) (A))
= a®" det(A).

(5) Let A = (Ast)nxn7 Ast = (0, 1), C = (Cst)SnXSn- Then,

SR R NS
and so det(A) = det(1)((A)) = det(C) = 0.
Also, AA = nB, where B = (Bst)nxn, Bst = (1,0). Hence
det(AA) = det( M (AA4)) = det(pM (nB)) = n®* det(Ig,) = n*".
Thus, det(AA) # det(A)det(A). O

~—

Note that every element o € H* can be uniquely expressed as a =
aj; + agk for some aj,as € C. Thus, every element (o,() € Hj
can be uniquely expressed as («,3) = (a1 + agk, f1 + B2k) for some
a17a27/81752 € C. Let

G = {(o1 + ok, B1 + Bok) € Hg | a1, 2, B1, B2 € C}

and define the map 6 : G — G by 0(v,n) = (a, 8)(7,n) for all (v,n) €
G. Then,

0(1,0) = a1(1,0) + as(k, 0)) + B1(0,1) + B2(0, k),

0(k,0) = (—a2)(1,0) + a1(k,0)) + (=B2)(0,1) + B1(0, k),
9(0’ 1) = (*Bl)(lv O) + (*/82 (kv 0) + al(oa 1) + a2(07 k)v .
9(0’ k) = 52(1’0) + (_ﬂl)(k’o) + (—042)(0, 1) + o (07 k)
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Thus, we establish the function ¢((C1 ).q — My4(C) defined by

ap —ay =P P
o= | G e
52 51 a2 aq

THEOREM 3.4. Let (o, 3),(v,n) € G. Then the followings are satis-
fied:

(1) (b (a(a,ﬁ))—aqS ( ,B) for all a € R.
2) 6@ (0, B) + (v,m)) = W<m¢<,>
(3) 62 ((cv, B)(7: 1)) # 62 (v, )DL (7,m) in general.

Proof. (1) and (2) are straightforward and we shall prove (3). Let
o = a1+ ok =1 and v = vy + 7k = j for some o,y € C, t =1,2.
Then ay =1, as =0, 1 =0, 72 =i. Thus,

0O -1 0 O

oV ((@.0.0) = ¢Pwoy=| . o o 2

0O 0 1 0
7 0 0 O 0 —2 0 O
0 2 0 O 7 0 0 O
a 0 0 2 O 0O 0 0 —2
0 0 0 = 0O 0 <2 O

— ¢ ((@,00)8%((7,0))
and so ¢4 (@, B)(7,m)) # 6% (e, B))84) (v, m)) in general. O

Let C?2 = {(o,8) | « € C}. Then, A € Myxn(H}) is uniquely ex-
pressed by A = Ay + Aok for some Ay, Ay € My 5, (C?).

DEFINITION 3.5. Let A € M, xn(Hg). Then, A € H{ is a left eigen-
value of A if AX = AX for some X # O € My,x1(Hg).

THEOREM 3.6. Let A = Ay + Agk € Myxn(Hg) for some Ay, Ay €
M5 (C?) and X = Ay + Aok for some A1, Ao € C2. If ) is a left eigenvalue
of A if and only if there exists a nonzero matrix X = X7 + Xok €
Myx1(Hg) for some X1, X5 € M,,1(C?) such that

Al — M1, —As+ X1, X1 . 0]
Ay — o, A1 — M1, Xo ~\ o )
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Proof. Note that
(Aak)(Xok) = — Ao X, (Mak)(Xak) = —AoXo,
Al(ng‘) + (Agk)Xl = (A]_X2 + AgXl)k‘,
)\1(X2]€) + ()\Qk)Xl = ()\1X2 + )\QX]_)k.
Thus, AX = AX is equivalent to
A1 X1 — A Xo = M X1 — XX, A1 X — A Xo = X1 — AXo

N . A — I, —As+ NI, X1 . O
which is equivalent to < Ay —Aol, Ay — ML, > < X, > = < 0 >
O
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