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RATIONAL PERIOD FUNCTIONS FOR I’ar(3) WITH
POLES ONLY AT 0

SoYouNG CHOI

ABSTRACT. We characterize a rational period function ¢(z) for
I'$ (3) which has a pole only at 0.

1. Introduction and statement of results

Let k be an integer and p € {1,2,3}. For any meromorphic function
f on the complex upper half plane H, the usual slash operator is defined
by
(fls)(2) = (cz+ d) " f(yz) v =(2}) € SLa(Z).
Let T'd (p) be the group generated by the congruence group I'g(p) and

the Fricke involution W), := (\% _1éﬁ>. Let T:=(}1)and U := TW),.

A rational period function g(z) of weight 2k for I'j (p) is a rational
function satisfying

(1.1) qloxWp+q =0

and

(1.2) qlorU™ 1 4 qlop U™ 2 + -+ + qloxU + ¢ = 0,
3, ifp=1

where n, = )
2p ifp=23.

The notion of rational period functions was initiated by Knopp through
modular integrals (see [6, 7]). Knopp [7] investigated the location of
poles of any rational period functions q(z) for I'§ (1) = SL2(Z) and
proved that when ¢(z) has a pole, ¢(z) has poles only at 0 or at real
quadratic irrationalities. For p = 2,3, the author and Kim [2] proved
that when ¢(z) has a pole, ¢(z) has poles only at 0 or at real quadratic
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irrationalities. We refer the reader to [3, 4, 5, 6, 7, 9] and [2, 8] for the re-
sults related to rational period functions for I'§ (1) and Tg (p) (p = 2, 3),
respectively.

Knopp [7] found the exact forms of rational period functions for I'§ (1)
with poles only at 0. Extending the result of Knopp, Oh [8] found the
exact forms of rational period functions for I'§ (2) with poles only at 0.
In the same paper, Oh also remarked the exact forms of rational period
functions for I‘ar (3) with poles only at 0 without proof. In this paper,
modifying the proof of Theorem 1.2 in [8] we prove that Oh’s assertion
is true.

THEOREM 1.1. Let q(z) be any rational period function of weight 2k
for T (3). If q(z) has poles only at 0, then

c1(1 — (V32)72k), ifk>1
(1.3) q(z) = e1(1 — (V32)72) + ez, ifk=1
(38 4 272 4 p(z), ik <0,

where c1, co are complex numbers and py, is a polynomial in z of degree
at most —2k.

This paper is organized as follows. In Section 2, we prove Theorem
1.1.

2. Proof of Theorem 1.1

Proof of Theorem 1.1:
Casel: k>0.
We first consider

(2.1) q(2) = arz7 - Farz b Fbiz 4 bp2™ (ap # 0, by, # 0),
with [ > 1,m > 0. Applying (1.1) to ¢(z), we have
—az) = (V32 Pl
— (_l)lal3l—kzl—2k RS (—1)&131_kzl_2k
b3 R by (—1)3 7 R
(2.2) 4+ by (—1)mg Mk mm2k

Comparing the lowest term in (2.2), we have [ = m + 2k. Note that

_ (V3 -1/V3 2 _ (2-1 3_ (V3 -2/V3 4 _ (1-1 5
U= (V) v = (3o, vt = (R R Ut = (32), U =
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<\Of 7_1%5) and UST = W3. From (1.2), we have

0 = (qlaxU°+qloxU* + -+ + qloxU + q)|2xT

1
\/§Z+% )
2v32 +/3

) +a(z+1),

= q|2kW3 + (32 + 1)_2kq(ﬁ) + (2\/32 + \/g)_%q(

2
\/32"1‘%
V3z+V3

2z4+1

+ (3z2+2) %y (3Z+2)

+ (V32 + v3)2q(

which gives from (1.1)
V3z 4+ L
(557 1) VIRV e +§§)

2z +1 ok \/§Z+%
3Z+2)+(\/§z+\/§) q(\/§2+\/§)

q(z) = (32+1)%q

+ (32 +2) Hq(

+ q(z+1)
-1

S (32 +1)"* N i
: 2= 32 —|— 1) 2k+’
]:O ZZO
Zi a3 2z + 1)-%=3 I b3k (2 4 1/3)1
(

z+1/3)= (22 + 1)2k+i

§=0
. li a3z +2)7H i”: bi(2z + 1)
(22 + 1)1 — (32 + 2)2k

1=0

j=0
+ Ii a3 2+ )T N3 (2 +2/3)"
2k+i
= (+2) (e 1)
-1 ‘ m ‘
(2.3) + a—j(z+ 177 4> bz + 1)1
=0 i=0

Since | — 2k = m and [ > m, comparing the principal part at oo in (2.1)
and (2.3), we get

bo+biz+- - +bnz"=byg+bi(z+1)+---+bup(z+1)"
which gives m = 0, hence

(2.4) =2k and q(2) =iz "+ +a1z7" + by.
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By applying (1.1) to (2.4) and comparing the coefficients, we have

(2.5) A

bo=—V3a, a_;j(~1)V3 P =—a; for1<j<l-1=2k—1.

In particular, ap = (—l)k“ak, so ap = 0 if k is even.
Applying (1.2) to (2.4) leads to

2k—1 g
S VI

j=0 (\/gz — \/§);
£ 2%k—j
o —2k
: JZ(:) (3z—2)(z — 1)%—J + bo(3z — 2)
2%k—1 .
e —2k
+ ; (2v32 — V/3)i (V32 — 2//3)2ki + b0(2\/§z —V3)
2k—1 |
" Z(:) (32 — 1)j?]2€;]— 1)2k—j + bp(3z — 1)—2k
QJk—l -
’ jgo (V32)i (V32 —jl/\/§)2k—j +bo(V/32) "%
2%k—1
(26) + 3 a2 4 by = 0,
j=0

If k =1, then q(2) = ag2=? + a1z~ + by. It follows from (2.5) that
by = —\/§2a2. Hence

q(z) = bo(1 — (V32)"3) + a1z~ L.

Suppose that k& > 2.
Note that from the partial fraction expansion, we have

1 A1 A2 AN B1 BQ BM
NE-—HM 2z 22 N2 —1 (z—1)2 (z— )M

where Ay_; = 3M+j(—1)M(MA}“ZII) (0 <j<N-1)and By—; =
BNHI (-1 (NPT (0< i< M —1).
. . . . @
By applying the partial fraction expansion to P (VI VA) and

(\/52)2,6_2(%271/\/5)2 on the left hand side of (2.6), we obtain that the
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coefficient of z=2k*+2 is —327kq; 4+ 37205 + agp_o so that

(2.7) aok—2 + 327’6(12 — 32*]“@1 =0.
By (2.5), we have agj,_s +37"*2a3 = 0 and so a1 = 0.

If kK = 2, then ag = 0,a3 = 0 and by = — 34(14 by (2.5) and (2.7).
Therefore

g(z) = bo(1 = (V32)™").
Suppose that k£ > 3.
We now assume a; = ao = - = a;_1 = 0 for 2 < ¢ < k — 1.
By applying the partial fraction expansion on the left hand side of
(2.6), we obtain that the coefficient of z=2F+i+1 js 3=h+itl(—1)itlg; ) 4
i3~ R (—1)%a; 4 agy_;—1 so that
0 = agp_i_1 + (—1)F137 kg, | 4+ i(—1)i37FFitly,,

By (2.5), agk_i_1 + aip1(—1)"137F++1 = 0 which gives a; = 0. Con-

sequently, we have a; = a9 = --- = ar_1 = 0. Note that a = 0 if k£ is
even.
Therefore, for k > 3, g(z) has the form
(2) = bo(1 — (vV/32)7%F), if k is even
) bo(1— (V3B2) ") +apzF,  if kis odd.

Since bo(1—(v/32)~%) satisfies (1.1) and (1.2), q(z) = bo(1—(v/32) ")+
ayz~¥ satisfies (1.1) and (1.2) if and only if a2~ satisfies (1.1) and (1.2).
Note that 2" satisfies (1.1) only when k is odd. We now show that for
odd k, z7* satisfies (1.1) and (1.2) if and only if k = 1. For ¢(z) = z7%,
the functional equation (1.2) says

-1 1 1
G- "B T (22— )3z —2)F

(2.8) + : SR S

‘ (3z —1)k(2z — 1)k~ 2k(3z— 1)k 2k
and this is 0 only when k = 1. Indeed, we have

k k
1 A; B; .
= . — th A;B;
(3z — 2)k(z — 1)k ; 1) +j; (32— 2)7 wi iBj # 0,

which gives that (2.8) is satisfied only when k = 1.
We now consider

gz) =zl + - a2l
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Note q1(2) := q(z) + 1 — (v/32)7?F is a rational period function with
poles only at 0. By the same proof in the above, ¢1(z) have the form

1— (vV32)72, if k> 1
a(z) = —2 1 e
1—-(V32)2+a1z7t, ifk=1,
which says
() 0, ifk>1
zZ) =
1 azt, ifk=1,
Case 2: k£ <0.

Let D be the differential operator defined by Df(z) = ﬁ%. By apply-
ing Bol’s identity [1] to (1.1) and (1.2), we have

0 = DM qluWs(2) + q(2)) = (D™ g)aorWs(2) + D> g(2),
0 = D2 (g|UP(2) + qanU(2) + - - - + qlawU(2) + ¢(2))
(D™ H1g) -0, UP(2) + (D21 q) | U (2) + - - -
+ (D7) o U(2) + D™ g(2),

which mean that ¢(=2**1)(2) is a rational period function of positive
weight 2—2k. Note that the term b; 27! does not occur as the derivative
of a rational function. Hence it follows from Case 1 of the proof that we
have ¢(=2*1D (2) = by(1 — (v/32)%#~2). Integrating —2k+ 1 times, we get

q(z) = c(Sk_lz_l + z_2k+1) + pr(2),

where ¢ is a complex number and pg(2) is a polynomial of degree < —2k.
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