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DISCRETE VOLUME OF THE POSET POLYTOPE FOR

A VARIANT OF UP-DOWN POSETS

Byeong-Gil Choe*, Hyeong-Kwan Ju**, and Kyu-Chul
Shim***

Abstract. Discrete volumes of poset polytopes for a variant of
up-down posets introduced in [4] were studied. We obtained the
generating functions for the discrete volumes of poset polytopes for
a variant of up-down poset using the characteristic matrices.

1. Introduction

Let r be a positive integer. [r] := {1, 2, · · · , r}. For a given bipartite

simple graphG = (V,E) with V = [r], the graph polytope P (G) is defined

as follows:

P (G) := {(x1, x2, · · · , xr) ∈ [0, 1]r | ij ∈ E implies xi + xj ≤ 1}.

A characteristic functionK : [0, 1]2 → R (resp. J : [0, 1]2 → R) is defined
by the following:

K(s, t)(resp. J(s, t)) :=

1, if s+ t ≤ 1(resp. s+ t ≥ 1)

0, elsewhere.

Now, if we let ϕ(x1, x2, · · · , xr) :=
∏

ij∈EK(xi, xj), then it can be seen

that P (G) = ϕ−1(1). Discrete volume of the polytope P of dimension n

is defined as

LP (m) := #(mP ∩ Zn).
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We call this an Ehrhart function. The Ehrhart series is an ordinary

generating function for the sequence (LP (m))m≥0 as follows:

EhrP (z) =
∑
m≥0

LP (m)zm.

See [1] for Ehrhart functions and Ehrhart series. Next, we let the char-

acteristic matrix U(m) of the first kind be a matrix of size m×m with

1 over the anti-diagonal entries or above, and 0 elsewhere. Likewise, we

let the characteristic matrix D(m) of the second kind be a matrix of size

m×m with 1 over the anti-diagonal entries or below, and 0 elsewhere.

For example,

U(4) =


1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

 and D(4) =


0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

 .

Their corresponding inverse matrices are as follows:

U(4)−1 =


0 0 0 1

0 0 1 −1

0 1 −1 0

1 −1 0 0

 and D(4)−1 =


0 0 −1 1

0 −1 1 0

−1 1 0 0

1 0 0 0

 .

Discrete volumes of graph polytopes are related to the characteristic

matrices.

Definition 1.1. For a given square matrix M , we denote s(M) by

the sum of all entries of the matrix M . Let u be the column vector all

of whose entries are 1. Note that s(M) = utMu.

Theorem 1.2. Let Ln be the path with n(≥ 1) vertices. That is,

Ln = ([n], E), where E = {i(i+1)|i = 1, 2, . . . , n−1}. Then the discrete

volume of graph polytope P (Ln) is

LP (Ln)(m) = s(((U(m+ 1))n−1).

Proof.

LP (Ln)(m) = #(mP (Ln)∩Zn) = #(mϕ−1(1)∩Zn) = #(ϕ−1(1)∩ 1

m
Zn).
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Let U(m+ 1) = (uij(m))0≤i,j≤m, where

uij(m) =

1, if i+ j ≤ m

0, otherwise
.

Note that uij(m) = K( i
m ,

j
m).

((U(m+ 1))n−1)ij =
∑

0≤i2,i3,··· ,in−1≤m

uii2(m)ui2i3(m) · · ·uin−1j(m)

=
∑

0≤i2,i3,··· ,in−1≤m

K(
i

m
,
i2
m
)K(

i2
m
,
i3
m
) · · ·K(

in−1

m
,
j

m
)

=
∑

0≤i2,i3,··· ,in−1≤m

ϕ(
i

m
,
i2
m
,
i3
m
, · · · in−1

m
,
j

m
)

s(((U(m+ 1))n−1) =
∑

0≤i,j≤m

((U(m+ 1))n−1)ij = #(ϕ−1(1) ∩ 1

m
Zn).

We introduce poset polytopes, and then derive Ehrhart series and gen-

erating functions for chain polytopes in Section 1. In Section 2, we

obtain the discrete volume of the poset polytopes for a new poset where

the chain and the up-down poset are connected. We also compute

and obtain the generating function on the poset polytopes for this new

poset. The generating functions are represented in terms of Pm(x) =

det(I+xU(m)), which we are familiar with and had certain relationship

with Chebyshev polynomials. (Refer [3] for the analysis of Pm(x)(=

Qm−1(−x))’s.) In the final Section we raise some issues for further con-

sideration in the future.

2. Poset Polytopes

Let S = ([n],≤) be a graded poset. Poset polytope of the poset S is

defined as following:

P (S) = {(x1, x2, · · · , xn) ∈ [0, 1]n|i ≤ j =⇒ xi ≤ xj ∀i, j ∈ [n]}.



198 B.-G. Choe, H.-K. Ju, and K.-C. Shim

One of the obvious posets is chains(totally ordered sets) which are given

by

Cn = {[n]|1 ≤ 2 ≤ · · · ≤ n}.

Therefore, the poset polytope P (Cn) corresponding to the poset Cn is:

(CP) P (Cn) = {(x1, x2, · · · , xn) ∈ [0, 1]n|0 ≤ x1 ≤ x2 ≤ · · ·xn ≤ 1}

Another kind of posets we are interested in is the up-down poset Zn

given by:

Zn = {[n]|1 ≤ 2 ≥ 3 ≤ · · · ≥ n if n is odd (≤ n if n is even)}.

Similar to the previous case, the corresponding poset polytope P (Zn)

can be defined for this up-down poset. All poset polytopes, like graph

polytopes, are subset of n−dimensional unit hypercube. Note that ev-

ery simple bipartite graph can be regarded as a graded poset of rank 1.

Now, we compute the discrete volume of P (Cn). In order to compute

the discrete volume of poset polytope for the chain Cn of length n rep-

resented as in the equation (CP), we need to do the change of variables

to use the idea of graph polytope as below: We let

τi =

1− xi, if i is even,

xi, otherwise
.

Then the successive inequalities turn into the following:

P (Cn) = {(τ1, τ2, · · · , τn) ∈ [0, 1]n | 0 ≤ τ1 ≤ 1− τ2 ≤ · · · ≤ τn

if n is odd ( or , 1− τn if n is even ) ≤ 1}.

Note that with this change of variables we have the following :

P (Cn) = ψ−1(1), where ψ(τ1, τ2, · · · , τn) = K(τ1, τ2)J(τ2, τ3)K(τ3, τ4) · · · .

The Ehrhart function for this polytope is as follows.

Theorem 2.1. Ehrhart function for the poset polytope P (Cn) is

given as following:

LP (C2k+1)(m) = #(mP (C2k+1)∩Z2k+1) = s[(U(m+1)D(m+1))k] =

(
2k + 1 +m

m

)
,
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LP (C2k)(m) = #(mP (C2k)∩Z2k) = s[(U(m+1)D(m+1))k−1U(m+1)] =

(
2k +m

m

)
.

That is,

LP (Cn)(m) = #(mP (Cn) ∩ Zn) =

(
n+m

m

)
,

and

EhrP (Cn)(z) =
1

(1− z)n+1

Proof. We prove the case n = 2k. The other case can be proved

similarly.

U(m+ 1)D(m+ 1) =



1 1 · · · 1 1

1 1 · · · 1 0

1 1 · · · 0 0
...

...
...

...
...

1 1 · · · 0 0

1 0 · · · 0 0





0 0 · · · 0 1

0 0 · · · 1 1
...

...
...

...
...

0 0 · · · 1 1

0 1 · · · 1 1

1 1 · · · 1 1



=



1 2 · · · m m+ 1

0 1 · · · m− 1 m
...

...
...

...
...

0 0 · · · 2 3

0 0 · · · 1 2

0 0 · · · 0 1


= I + 2N + 3N2 + · · ·+ (m+ 1)Nm = (I −N)−2,

where the nilpotent matrixN = (aij), ai,i+1 = 1, and 0 elsewhere. Using

the same method as in the proof of Theorem 1, it can be shown that the

following formula holds.

LP (C2k)(m) = #(mP (C2k) ∩ Z2k) = s[(U(m+ 1)D(m+ 1))k−1U(m+ 1)]

= s((I −N)−2(k−1)U(m+ 1)).
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(I −N)−2(k−1) =
∑

0≤i≤m

(
−2k + 2

i

)
N i =

∑
0≤i≤m

(
2k − 3 + i

i

)
N i

=



(
2k−3
0

) (
2k−2
1

)
· · ·

(
2k+m−4
m−1

) (
2k+m−3

m

)
0

(
2k−3
0

)
· · ·

(
2k+m−5
m−2

) (
2k+m−4
m−1

)
...

...
...

...
...

0 0 · · ·
(
2k−2
1

) (
2k−1
2

)
0 0 · · ·

(
2k−3
0

) (
2k−2
1

)
0 0 · · · 0

(
2k−3
0

)


.

(I −N)−2(k−1)U(m+ 1)

=



(
2k−3
0

) (
2k−2
1

)
· · ·

(
2k+m−4
m−1

) (
2k+m−3

m

)
0

(
2k−3
0

)
· · ·

(
2k+m−5
m−2

) (
2k+m−4
m−1

)
...

...
...

...
...

0 0 · · ·
(
2k−2
1

) (
2k−1
2

)
0 0 · · ·

(
2k−3
0

) (
2k−2
1

)
0 0 · · · 0

(
2k−3
0

)





1 1 1 · · · 1 1

1 1 1 · · · 1 0
...

...
...

...
...

...

1 1 1 · · · 0 0

1 1 0 · · · 0 0

1 0 0 · · · 0 0



=



(
2k+m−2

m

) (
2k+m−3
m−1

)
· · ·

(
2k−1
1

) (
2k−2
0

)(
2k+m−3
m−1

) (
2k+m−4
m−2

)
· · ·

(
2k−2
0

)
0

...
...

...
...

...(
2k
2

) (
2k−1
1

)
· · · 0 0(

2k−1
1

) (
2k−2
0

)
· · · 0 0(

2k−2
0

)
0 · · · 0 0


.

From the previous expression we obtain the following:

LP (C2k)(m) = s[(U(m+1)D(m+1))k−1U(m+1)] =
m∑
i=0

(
2k − 1 + i

i

)
=

(
2k +m

m

)
.

Thus, the Ehrhart series of the poset polytope P (Cn) is

EhrP (Cn)(z) =
∑
m≥0

LP (Cn)(m)zm =
1

(1− z)n+1
.
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Example 2.2. Ehrhart series of P (C4) is as follows:

EhrP (C4)(z) =
∑
m≥0

LP (C4)(m)zm =
∑
m≥0

(
4 +m

m

)
zm =

1

(1− z)5

= 1 + 5z + 15z2 + 35z3 + 70z4 + · · · .

3. Main Results

We consider the discrete volume of poset polytope for up-down poset.

Let b(k,m) := s(U(m+1)k−1). (See [2](A050446) or [5] for more details

on this bivariate sequence.) For convenience, b(0,m) is defined as 0.

We need a notation about the continued fraction. For a given infinite

sequence (an)n≥0 we define

Hn(a0, a1, · · · , an) :=
1

a0 +
1

a1 +
1

a2 +
1

. . . an−1 +
1

an + 1

and

Fm(x) := Hm((−1)1x, (−1)2x, (−1)3x, · · · , (−1)m+1x).

Lemma 3.1. Let A = (aij) be an invertible matrix of size n. Then

s(adj(A)) = det

(
0 −ut

u A

)
,

where u is an n−vector all of its entries 1.
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Proof. Let αi be the i−th column vector of the adjugate adj(A) of

the matrix A and |αi| the column sum of the vector αi.

s(A) = ut
(
adj(A)

)
u =

n∑
i=1

|αi|.

Note that

|αi| = det(β1, β2, · · · , βi−1, u, βi+1, · · · , βn)

where βi is the i−th column vector of the matrix A. The cofactor ex-

pansion of the given matrix (
0 −ut

u A

)
with respect to the first row gives us the value

∑n
i=1 |αi|.

The following theorem comes from the reference [3] and is related to the

poset polytope for the up-down poset. We provide its proof for a clear

understanding of what follows.

Theorem 3.2. For fixed m, the generating function associated with

the discrete volume sequence LP (Lk)(m)(k = 0, 1, 2, · · · ) of poset poly-

tope P (Lk) of up-down poset is an Fm(x). That is,

Fm(x) = 1 +
∞∑
k=0

LP (Lk)(m)xk+1 = 1+
∞∑
k=0

s(U(m+ 1)k)xk+1 =
Pm(x)

Qm(x)
,

where the last expression Pm(x)
Qm(x) is the reduced rational function so that

Qm(x) = det(I − xU(m+ 1)) and Pm(x) = Qm−1(−x).

Proof.

F ∗
m(x) =

∞∑
k=0

LP (Lk)(m)xk =
∞∑
k=0

s(U(m+ 1)k)xk

= s
( ∞∑

k=0

(xU(m+ 1))k
)
= s
(
(I − xU(m+ 1))−1

)
=
s(adj(I − xU(m+ 1)))

det(I − xU(m+ 1))
,

where adj(I − xU(m+ 1)) is an adjugate of the matrix I − xU(m+ 1).
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By the previous lemma, the following holds:

s(adj(I − xU(m+ 1))) = det

(
0 −ut

u I − xU(m+ 1)

)
.

In order to get the formula for Fm(x) = 1+xF ∗
m(x) we need the following:

xdet

(
0 −ut

u I − xU(m+ 1)

)
+ det(I − xU(m+ 1))

= det

(
0 −ut

xu I − xU(m+ 1)

)
+ det

(
1 −ut

0 I − xU(m+ 1)

)

= det

(
1 −ut

xu I − xU(m+ 1)

)

= det



1 −1 −1 · · · −1 −1

0 1 0 · · · 0 0

0 0 1 · · · 0 x

0 0 0 · · · x x
...

...
...

...
...

...

0 0 0 · · · 1 + x x

0 0 x · · · 0 1 + x


= det(I + xD(m− 1)) = det(I + xU(m− 1)) = Qm−1(−x) = Pm(x).

So we get the desired result:

Fm(x) = 1 + xF ∗
m(x) =

Pm(x)

Qm(x)
.

Example 3.3. Fm(x) satisfies the first-order nonlinear recurrence

relation:

Fm+1(x) =
1

−x+ Fm(−x)
with F0(x) = 1.
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We list first several continued fractions Fm(x).

F0(x) =
1

1− x
=

P0(x)

Q0(x)

F1(x) =
1 + x

1− x− x2
=

P1(x)

Q1(x)

F2(x) =
1 + x− x2

1− 2x− x2 + x3
=

P2(x)

Q2(x)

F3(x) =
1 + 2x− x2 − x3

1− 2x− 3x2 + x3 + x4
=

P3(x)

Q3(x)

...
...

...

The following result is useful to prove the main results.

Theorem 3.4. We let αi (0 ≤ i ≤ m) be the i-th column vector

of the adjoint matrix adj(Im+1 − xU(m+ 1)), and |αi| its column sum.

Then the following holds:

(3.1) |αi| =

Pm−2i(x) i ≤ ⌊m2 ⌋

P2i−1−m(−x) i > ⌊m2 ⌋

where P0(x) = 1 and Pm(x) = det(Im+xU(m)) = Qm−1(−x) form ≥ 1.

Proof. We use the mathematical induction onm. For the casem = 1:

adj(I2 − xU(2)) =

(
1 x

x 1− x

)
,

 |α0| = 1 + x = P1(x),

|α1| = 1 = P0(−x).

This says that the formula (3.1) works for the case m = 1. Now, we

assume that the next formula holds for the case k < m.

(3.2) |αi| =

Pk−2i(x) i ≤ ⌊k2⌋

P2i−1−k(−x) i > ⌊k2⌋
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We show that the formula (3.2) holds for the case k = m. |αi|, which is the i-

th column sum of adj(Im+1 − xU(m+ 1)), is as following:

|αi| = det



1− x −x · · · 1 · · · −x −x
−x 1− x · · · 1 · · · −x 0

−x −x · · · 1 · · · 0 0

−x −x · · · 1 · · · 0 0
...

...
...

...
...

...
...

−x −x · · · 1 · · · 1 0

−x 0 · · · 1 · · · 0 1


(m+1)×(m+1)

.

Note that the (m+1)−column vector u is positioned at the i-th column.

Add an x times i-th column to all remaining columns leads to the fol-

lowing:

det



1 0 · · · 1 · · · 0 0

0 1 · · · 1 · · · 0 x

0 0 · · · 1 · · · x x

0 0 · · · 1 · · · x x
...

...
...

...
...

...
...

0 0 · · · 1 · · · 1 + x x

0 x · · · 1 · · · x 1 + x


(m+1)×(m+1)

= det



1 0 · · · 1 · · · 0 x

0 1 · · · 1 · · · x x

0 0 · · · 1 · · · x x

0 0 · · · 1 · · · x x
...

...
...

...
...

...
...

0 x · · · 1 · · · 1 + x x

x x · · · 1 · · · x 1 + x


m×m
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Now, u is m-column vector positioned at the (i − 1)th column. Add

(−x)u to all the remaining columns. Then we obtain the next:

= det



1− x −x · · · 1 · · · −x 0

−x 1− x · · · 1 · · · 0 0

−x −x · · · 1 · · · 0 0

−x −x · · · 1 · · · 0 0
...

...
...

...
...

...
...

−x 0 · · · 1 · · · 1 0

0 0 · · · 1 · · · 0 1


m×m

By cofactor expansion along the last column, we get the following:

= det



1− x −x · · · 1 · · · −x −x
−x 1− x · · · 1 · · · −x 0

−x −x · · · 1 · · · 0 0

−x −x · · · 1 · · · 0 0
...

...
...

...
...

...
...

−x −x · · · 1 · · · 1 0

−x 0 · · · 1 · · · 0 1


(m−1)×(m−1)

This determinant is a (i− 1)th column sum of adj(Im−1 − xU(m− 1)).

Therefore, by the induction assumption, from the formula (3.2) with

(k, i) replaced by (m− 2, i− 1) we get the following equations.

|αi| =

P(m−2)−2(i−1)(x) i− 1 ≤ ⌊m−2
2 ⌋

P2(i−1)−1−(m−2)(−x) i− 1 > ⌊m−2
2 ⌋

The right hand side of the previous expression is exactly same as that

of the formula (3.1). This completes the proof.
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Example 3.5. Consider the example with the case m = 4.

(|α0|, |α1|, |α2|, |α3|, |α4|)

= utadj(I5 − xU(5))

= (1 + 2x− 3x2 − x3 + x4, 1 + x− x2, 1, 1− x, 1− 2x− x2 + x3)

= (P4(x), P2(x), P0(x), P1(−x), P3(−x))

□

A variant of the up-down poset is defined as follows. (See [4] and Figure

1 for details.)

As,n := {σs < σs−1 < · · · < σ2 < σ1 < τ1 < τ2 > τ3 < τ4 > · · ·< ( or >)τn} ,

where [n + s] = {σi}si=1 ∪ {τj}nj=1. In other words, the sub-poset σ′is

forms a chain and the orders between τ ′is in As,n change alternatively.

Our goal here is to find the discrete volume of poset polytope for variant

of updown posets.

Figure 1. A Variant of the up-down poset

We consider the discrete volume of poset polytope for A2r,n+1. (See
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Figure 1.) The Ehrhart function of the poset polytope for the poset

described as A2r,n+1 is obtained as the sum of the all entries of the

matrix given by(
U(m+ 1)D(m+ 1)

)r
U(m+ 1)n =

(
U(m+ 1)J

)2r
U(m+ 1)n,

so that

LP (A2r,n+1)(m) = #(mP ∩ Z2r+n+1) = s

((
U(m+ 1)J

)2r
U(m+ 1)n

)
,

where J = (bij) be a (m+ 1)× (m+ 1) square matrix with bi,j = 1

(0 ≤ i, j ≤ m) if i+ j = m, 0 for other entries. Similarly, we have

LP (A2r+1,n+1)(m) = #(mP ∩ Z2r+n+2) = s

(
D(m+ 1)U(m+ 1)

)r+1
U(m+ 1)n−1

)
= s

((
JU(m+ 1)

)2r+2
U(m+ 1)n−1

)
= s

(
J
(
JU(m+ 1)

)2r+2
U(m+ 1)n−1

)
= s

((
U(m+ 1)J

)2r+1
U(m+ 1)n

)

Note here that J−1 = J, D(m+ 1) = JU(m+ 1)J, and

(U(m+1)D(m+1) = (U(m+1)J)2 = I+2N+3N2+· · ·+(m+1)Nm = (I−N)−2.

The following formula is useful.

(3.3)

utadj(I−xU(m+1)J) = ut



(1− x)m x(1− x)m−1 x(1− x)m−2 · · · x(1− x) x

0 (1− x)m x(1− x)m−1 · · · x(1− x)2 x(1− x)

0 0 (1− x)m · · · x(1− x)3 x(1− x)2

0 0 0 · · · x(1− x)4 x(1− x)3

...
...

...
...

...
...

0 0 0 · · · (1− x)m x(1− x)m−1

0 0 0 · · · 0 (1− x)m


= ((1− x)m, (1− x)m−1, (1− x)m−2, · · · , (1− x), 1).
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Theorem 3.6. Let gm(x, y) be the bi-variate generating function of

LP (As,n)(m) for fixed m as following:

gm(x, y) =
∑
s,n≥0

LP (As,n)(m)xsyn,

and let fm(x, y) be the modified generating function for LP (As,n)(m).

That is,

fm(x, y) = 1 + xgm(x, 0) + ygm(0, y) + xygm(x, y).

Then fm(x, y) satisfies the following:

fm(x, y) =
1

(1− x)m+1
+ Fm(y)− 1 + xygm(x, y),

where Fm(y) is a generating function given in the form of a continued

fraction as in Theorem 3.2,

gm(x, y) =
1

(1− x)m+1 · Pm+1(−y)

( m∑
i=0

|wi|(1− x)m−i

)
,

and

|wi| =

Pm−2i(y) i ≤ ⌊m2 ⌋

P2i−1−m(−y) i > ⌊m2 ⌋
.

Proof. (1) Case 1: Both of the Chain and the Up-down poset are

empty. For convenience we let

fm(0, 0) = 1.

(2) Case 2: The Chain is empty, but the Up-down poset is not.

fm(0, y) = 1+ygm(0, y) = 1+ys[(I−yU(m+1))−1] =
Pm(−y)
Pm+1(y)

= Fm(y).

(3) Case 3: The Up-down poset is empty, but the Chain is not.



210 B.-G. Choe, H.-K. Ju, and K.-C. Shim

fm(x, 0) = 1 + xgm(x, 0)

= 1 + xs[(I − xU(m+ 1)J)−1]

= 1 +
x

(1− x)m+1

m∑
j=0

(1− x)j

=
1

(1− x)m+1
.

(4) Case 4: Neither of the Chain nor the Up-down poset is empty.

gm(x, y) =
∑
s,n≥0

LP (As,n)(m)xsyn

= s
(
(I + xU(m+ 1)J + (xU(m+ 1)J)2 + · · · )(I + yU(m+ 1) +

(
yU(m+ 1)

)2
+ · · · )

)
= ut(I − xU(m+ 1)J)−1(I − yU(m+ 1))−1u

= ut
(

1

(1− x)m+1
adj(I − xU(m+ 1)J)

1

Pm+1(−y)
adj(I − yU(m+ 1))

)
u

=
1

(1− x)m+1 · Pm+1(−y)

(
utadj(I − xU(m+ 1)J)

)(
adj(I − yU(m+ 1))u

)
Let |vi| is i-th column sum of adj(I − (xU(m + 1)J), |wj | is j-th row

sum of adj(I − yU(m + 1)). Then the last two factors in the previous

expression is changed to the following:(
utadj(I − xU(m+ 1)J)

)(
adj(I − yU(m+ 1))u

)
=

m∑
i=0

|vi||wi|.

By the Formula (3.3), |vi| = (1 − x)m−i(0 ≤ i ≤ m), and |wi| is the

formula given by Theorem 3.4.

gm(x, y) =
∑
s,n≥0

s
(
(U(m+ 1)J)sU(m+ 1)n

)
xsyn

=
1

(1− x)m+1 · Pm+1(−y)

( m∑
i=0

|wi|(1− x)m−i

)
,
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where |wi| =

Pm−2i(y) i ≤ ⌊m2 ⌋

P2i−1−m(−y) i > ⌊m2 ⌋
.

Example 3.7. In this example we consider the generating function

of the given poset polytope (magnified by a factor of 4, i.e., m = 4) for

the variant poset. Note that

Pn+2(y) = yPn+1(−y) + Pn(y)(n = 0, 1, 2, · · · )

with

P0(y) = 1, P1(y) = 1 + y.

So, we can find other Pi(y)’s as follows:

P2(y) = 1 + y − y2,

P3(y) = 1 + 2y − y2 − y3,

P4(y) = 1 + 2y − 3y2 − y3 + y4

|w0| = P4(y) = 1 + 2y − 3y2 − y3 + y4

|w1| = P2(y) = 1 + y − y2

|w2| = P0(y) = 1

|w3| = P1(−y) = 1− y

|w4| = P3(−y) = 1− 2y − y2 + y3

This information gives us the generating function for fixed m = 4:

f4(x, y) =
1

(1− x)5
+

P4(y)

P5(−y)
− 1 +

xy

(1− x)5P5(−y)

4∑
i=0

|wi|(1− x)4−i

where the summation term in f4(x, y) is:

4∑
i=0

|wi|(1− x)4−i

= P4(y)(1− x)4 + P2(y)(1− x)3 + P0(y)(1− x)2 + P1(−y)(1− x) + P3(−y).
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4. Conclusion

In [4] a generating function on the sequence given by the continuous

volume of poset polytope for variant up-down poset according to the

length of both chain and up-down poset was found. Here we also ob-

tained the generating functions on the sequence given by the discrete

volume of the same poset(of course, according to the length of both

chain and up-down poset) using characteristic matrix. However, those

results obtained are for the fixed m. In other words, it remains to try

the generating functions on m with these results.
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