DOI QR코드

DOI QR Code

Parametric study of the energy absorption capacity of 3D-printed continuous glass fiber reinforced polymer cruciform honeycomb structure

  • Received : 2023.06.19
  • Accepted : 2023.11.14
  • Published : 2023.11.25

Abstract

In this paper, the energy absorption capability of a novel cruciform composite lattice structure was evaluated through the simulation of compression tests. For this purpose, several test samples of Polylactic acid cellular reinforced with continuous glass fibers were prepared for compression testing using the additive manufacturing method of material extrusion. Using a conventional path design for material extrusion, multiple debonding is probable to be occurred at the joint regions of adjacent cells. Therefore, an innovative printing path design was proposed for the cruciform lattice structure. Afterwards, quasistatic compression tests were performed to evaluate the energy absorption behaviour of this structure. A finite element model based on local material property degradation was then developed to verify the experimental test and extend the virtual test method. Accordingly, different combinations of unit cells' dimensions using the design of the experiment were numerically proposed to obtain the optimal configuration in terms of the total absorbed energy. Having brilliant energy absorption properties, the studied cruciform lattice with its optimized unit cell dimensions can be used as an energy absorber in crashworthiness applications. Finally, a cellular structure will be suitable with optimal behavior in crush load efficiency and high energy absorption.

Keywords

References

  1. Asur Vijaya Kumar, P.K., Dean, A., Reinoso, J. and Paggi, M. (2021), "A multi phase-field-cohesive zone model for laminated composites: Application to delamination migration", Comp. Struct. 276, 114471. https://doi.org/10.1016/j.compstruct.2021.114471.
  2. Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Comp. Struct. 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.
  3. Cote, F., Biagi, R., Bart-Smith, H. and Deshpande, V.S. (2007), "Structural response of pyramidal core sandwich columns", Int. J. Solids Struc., 44, 3533=3556. https://doi.org/10.1016/j.ijsolstr.2006.10.004.
  4. Dean, A., Asur Vijaya Kumar, P.K., Reinoso, J., Gerendt, C., Paggi, M., Mahdi, E. and Rolfes, R. (2020), "A multi phase-field fracture model for long fiber reinforced composites based on the puck theory of failure", Comp. Struct., 251, 112446. https://doi.org/10.1016/j.compstruct.2020.112446.
  5. Dean, A., Reinoso, J., Jha, N.K., Mahdi, E. and Rolfes, R. (2020), "A phase field approach for ductile fracture of short fibre reinforced composites", Theor. Appl. Fract. Mech., 106, 102495. https://doi.org/10.1016/j.tafmec.2020.102495.
  6. Duan, Y., Du, B., Shi, X., Hou, B. and Li Y. (2019), "Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with kelvin cells", Int. J. Impact Eng., 132, 103303. https://doi.org/10.1016/j.ijimpeng.2019.05.017.
  7. Farrokhabadi, A., Ashrafian, M.M., Gharehbaghi, H. and Nazari, R. (2021), "Evaluation of the equivalent mechanical properties in a novel composite cruciform honeycomb using analytical and numerical methods", Comp. Struct., 275, 14410. https://doi.org/10.1016/j.compstruct.2021.114410.
  8. Farrokhabadi, A., Gharehbaghi, H., Malekinejad, H., Sebghatollahi, M., Noroozi, Z. and Veisi, H. (2023), "Study of equivalent mechanical properties and energy absorption of composite honeycomb structures", Int. J. App. Mech., 1-22. https://doi.org/10.1142/S1758825123500382.
  9. Farrokhabadi, A., Veisi, H., Gharehbaghi, H., Montesano, J., Behravesh, A.H. and Hedayati, S.K. (2023), "Investigation of the energy absorption capacity of foam-filled 3D-printed glass fiber reinforced thermoplastic auxetic honeycomb structures", Mech. Adv. Mate. Struct., 30, 758-769. https://doi.org/10.1080/15376494.2021.2023919.
  10. Gharehbaghi, H. and Farrokhabadi, A. (2023), "Analytical, experimental, and numerical evaluation of mechanical properties of a new unit cell with hyperbolic shear deformable beam theory", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2023.2231441.
  11. Gharehbaghi, H., Farrokhabadi, A. and Noroozi, Z. (2023), "Introducing a new hybrid surface strut-based lattice structure with enhanced energy absorption capacity", Mech. Adv. Mater. Struct., 1-10. https://doi.org/10.1080/15376494.2023.2167246.
  12. Gharehbaghi, H., Sadeghzade, M. and Farrokhabadi, A. (2022), "Introducing the new lattice structure based on the representative element double octagonal bipyramid", Aero. Sci. Tech., 121, 107383. https://doi.org/10.1016/j.ast.2022.107383.
  13. Ghasemabadian, M.A., Kadkhodayan, M., Altenhof, W., and Liu, Y. (2021), "An experimental and numerical study on the crush responses and energy absorption characteristics of single- and bi-layer cups under low-velocity impact", Steel Comp. Struct., 39(6), 665-683. https://doi.org/10.12989/scs.2021.39.6.665.
  14. Ghorbani, F., Gharehbaghi, H., Farrokhabadi, A. and Bolouri, A. (2023), "Investigation of the equivalent mechanical properties of the bone-inspired composite cellular structure : Analytical, numerical and experimental approaches", Comp. Struct., 309, 116720. https://doi.org/10.1016/j.compstruct.2023.116720.
  15. Ghorbani, F., Gharehbaghi, H., Farrokhabadi, A., Bolouri, A., Behravesh, A.H. and Hedayati, S.K. (2023), "Investigation of energy absorption performances of a 3D printed fiber-reinforced bio-inspired cellular structure under in-plane compression loading", Mech. Adv. Mate. Struct. 1-19. https://doi.org/10.1080/15376494.2023.2214552.
  16. Hu, L., You, F. and Yu, T. (2013), "Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs", Mat. Des., 46, 511-523. https://doi.org/10.1016/j.matdes.2012.10.050.
  17. Liu, B., Lou, R., Liu, X., Yao, Y. and Li, H. (2023), "Effect of printing path on compressive properties of 3D printed continuous fiber composite negative poisson's ratio structure", Poly. Comp., 44, 6989-7001. https://doi.org/10.1002/pc.27612.
  18. Ma, N., Han, Q., Han, S. and Li C. (2023), "Hierarchical reentrant honeycomb metamaterial for energy absorption and vibration insulation", Int. J. Mech. Sci. 250, 108307. https://doi.org/10.1016/j.ijmecsci.2023.108307.
  19. Malekzadeh Fard, K. and Mahmoudi, M. (2023), "Energy absorption optimization on a sandwich panel with lattice core under the low-velocity impact", Steel Comp. Struct. 46(4), 525-538. https://doi.org/10.12989/scs.2023.46.4.525.
  20. Plocher, J. and Panesar, A. (2020), "Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures", Add. Manuf. 33, 101171. https://doi.org/10.1016/j.addma.2020.101171.
  21. Sadeghzade, M., Gharehbaghi, H. and Farrokhabadi, A. (2021), "Experimental and analytical studies of mechanical properties of additively manufactured lattice structure based on octagonal bipyramid Cubic Unit Cell", Add. Manuf., 48, 102403. https://doi.org/10.1016/j.addma.2021.102403.
  22. Sadeghzade, M., Gharehbaghi, H., Toozandehjani, H. and Farrokhabadi, A. (2023), "Experimental study of energy absorption capability in the lattice structures based on the octagonal bipyramid unit cell", J. Brazil. Soc. Mech. Sci. Eng., 45, 460. https://doi.org/10.1007/s40430-023-04396-3.
  23. Song, K., Li D., Zhang, C., Liu T., Tang, Y., Xie, Y.M. and Liao, W. (2023), "Bio-Inspired Hierarchical Honeycomb Metastructures with Superior Mechanical Properties", Comp. Struc., 304(2), 116452. https://doi.org/10.1016/j.compstruct.2022.116452.
  24. Taghipoor, H. and Damghani Noori, M. (2018), "Experimental and Numerical Study on Energy Absorption of Lattice-Core Sandwich Beam", Steel Comp. Struct. 27(2), 135-147. https://doi.org/10.12989/scs.2018.27.2.135.
  25. Tao, Y., Duan, S., Wen, W., Pei, Y. and Fang, D. (2017), "Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs", Comp. B: Eng. 118, 33-40. https://doi.org/10.1016/j.compositesb.2017.03.002.
  26. Wadley, H.N.G., Fleck, N.A. and Evans, A.G. (2003), "Fabrication and structural performance of periodic cellular metal sandwich structures", Comp. Sci. Tech., 63, 2331-2343. https://doi.org/10.1016/S0266-3538(03)00266-5.
  27. Wang, Z. and Liu, J. (2019), "Numerical and theoretical analysis of honeycomb structure filled with circular aluminum tubes subjected to axial compression", Comp. B: Eng. 165, 626-635. https://doi.org/10.1016/j.compositesb.2019.01.070.
  28. Wang, Z., Liu, J., Lu, Z. and Hui, D. (2017), "Mechanical behavior of composited structure filled with tandem honeycombs", Comp. B: Eng. 114, 128-138. https://doi.org/10.1016/j.compositesb.2017.01.018.
  29. Xin, Z., Zhang, X., Duan, Y. and Xu, W. (2018), "Nacre-inspired design of CFRP composite for improved energy absorption properties", Comp. Struc. 184, 102-109. https://doi.org/10.1016/j.compstruct.2017.09.075.
  30. Xiong, J., Ma, L., Pan, S., Wu, L., Papadopoulos, J. and Vaziri, A. (2012), "Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores", Acta Mate., 60, 1455-1466. https://doi.org/10.1016/j.actamat.2011.11.028.
  31. Yang, X., Ma, J., Sun, Y. and Yang, J. (2018), "Ripplecomb: A novel triangular tube reinforced corrugated honeycomb for energy absorption", Comp. Struct. 202, 988-999. https://doi.org/10.1016/j.compstruct.2018.05.019.
  32. Zeng, C., Liu, L., Bian, W., Leng, J. and Liu, Y. (2021), "Compression behavior and energy absorption of 3D printed continuous fiber reinforced composite honeycomb structures with shape memory effects", Add. Manuf. 38, 101842. https://doi.org/10.1016/j.addma.2021.101842.
  33. Zhou, H., Guo, R., Bao, K., Wei, H. and Liu, R. (2019), "Energy absorption investigation of square CFRP honeycomb reinforced by PMI foam fillers under quasi-static compressive load", Steel Comp. Struct., 33(6), 837-847. https://doi.org/10.12989/scs.2019.33.6.837.