DOI QR코드

DOI QR Code

Relationship between Grain Size and Organic Carbon Content of Surface Sediments in the Major Estuarine Areas of Korea

국내 주요 하구역 표층퇴적물의 입도와 유기탄소 함량 관계

  • BOO-KEUN KHIM (Department of Oceanography and Marine Research Institute, Pusan National University) ;
  • JU-YEON YANG (Division of Earth Environmental System, Pusan National University) ;
  • HYUK CHOI (Division of Earth Environmental System, Pusan National University) ;
  • KWANGKYU PARK (Marine Research Institute, Pusan National University) ;
  • KYUNG HOON SHIN (Department of Marine Science and Convergence Engineering, Hanyang University)
  • 김부근 (부산대학교 해양학과 및 해양연구소 ) ;
  • 양주연 (부산대학교 지구환경시스템학부 ) ;
  • 최혁 (부산대학교 지구환경시스템학부) ;
  • 박광규 (부산대학교 해양연구소 ) ;
  • 신경훈 (한양대학교 해양융합공학과 )
  • Received : 2023.02.27
  • Accepted : 2023.10.27
  • Published : 2023.11.30

Abstract

An estuary is a transitional water area that links the land and sea through rivers and streams, transporting various components from the land to the sea, which plays an important role in determining primary productivity in the coastal environment, and this coastal ecosystem captures a huge amount of carbon into biomass, known as blue carbon, which mitigates climate change as a potential carbon reservoir. This study examined the variation of mean grain size and organic carbon content of the surface sediments for 6 years and analyzed their relationship in the western and southern estuarine areas (Han River Estuary, Geum River Estuary, Yeongsan River Estuary, Seomjin River Estuary, and Nakdong River Estuary) and the East Sea upwelling area. During the sampling period (2015 to 2020), seasonal variation of both properties was not observed, because their variations might be controlled by diverse oceanographic environments and hydrographic conditions within each survey area. However, despite the synoptic problem of all samples, the positive relationship was obtained between the averages of mean grain size and organic carbon content, which clearly distinguishes each survey area. The unique positive relationship in all estuarine areas implies that the same process by sediment clay particles is important in the organic carbon accumulation. However, additional important factor may be expected in the organic carbon accumulation in the East Sea upwelling area. Further necessary data (sedimentation rate, dry bulk density etc) should be required for the estimation of carbon stock to evaluate the major estuaries in Korea as potential carbon reservoirs in the coastal environment.

하구역은 강과 하천을 통해 육상과 해양을 연결하는 전이수역으로 해양으로 공급되는 많은 물질들은 연안환경의 일차 생산성을 결정하는 중요한 역할을 담당하며, 이러한 연안생태계는 생물량에 의해 제거되는 탄소인 블루카본의 탄소 저장소로서 기후변화를 완화시키는 역할을 한다. 우리나라의 서-남해 하구역(한강, 금강, 영산강, 섬진강, 낙동강)과 동해 용승해역에서 지난 6년간 표층퇴적물의 평균입도와 유기탄소 함량의 변화와 두 인자들 사이의 상관관계를 분석하였다. 조사기간(2015-2020년) 동안 서-남해 하구역과 동해 용승해역 표층퇴적물의 평균입도와 유기탄소 함량은 계절적 변화가 관찰되지 않았으며, 전반적으로 각 해역의 다양한 해양환경 및 수리역학적 조건에 의해 두 인자들이 조절되는 것으로 해석된다. 조사된 모든 시료채취의 동시성이 없는 문제점에도 불구하고 연구지역에서 분석된 모든 퇴적물 평균입도들의 평균값과 유기탄소 함량의 평균값은 양의 상관관계를 보이며 각 하구역과 동해 용승해역을 구분한다. 동일한 양의 상관관계를 보이는 각 하구역에서는 아마도 같은 과정에 의한 퇴적물 점토입자의 퇴적이 유기탄소 축적에 중요한 역할을 담당한다. 그러나 동해 용승해역은 하구역과 다르게 추가적인 유기탄소 축적의 요인이 나타난다. 국내 주요 하구역들이 연안환경에서 중요한 탄소저장소로서 평가되기 위해서는 탄소 저장량 계산을 위한 추가적인 자료(퇴적률, 전밀도 등)가 요구된다.

Keywords

Acknowledgement

논문 원고를 심사하시고 자료해석을 위해 중요한 의견을 제공하신 신영재교수님과 두 분의 심사위원들께 감사드립니다. 이 연구는 한국연구재단의 해양-육상-대기 탄소순환시스템 연구사업(한반도 주변 해양-육상-대기 탄소 순환 종합조사: 2021M316A1091270)의 지원을 받아 수행하였습니다.

References

  1. Ban, Y.B., 1986. Analysis of the landforms and surface sediments in the Nakdong Delta. Ph.D. Thesis, Kyunghee University, Korea, 115 pp.
  2. Bauer, J.E., W.J. Cai, P.A. Raymond, T.S. Bianchi, C.S. Hopikinson and P.A.G. Regnier, 2013. The changing carbon cycle of the coastal ocean. Nature, 504: 61-70. https://doi.org/10.1038/nature12857
  3. Bianchi, T.S. and M.A. Allison, 2009. Large-river delta-front estuaries as natural "recorders" of global environmental change. Proc. Natl. Acad. Sci., 106(20): 8085-8092. https://doi.org/10.1073/pnas.0812878106
  4. Bianchi, T.S., S. Mitra, B. and A. Mckee, 2002. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: implications for differential sedimentation and transport at the coastal margin. Mar. Chem., 77(2-3): 211-223. https://doi.org/10.1016/S0304-4203(01)00088-3
  5. Burdige, D.J., 2006. Geochemistry of Marine Sediments. Princeton University Press, Princeton, NJ, USA, 624 pp.
  6. Byun, C., S.H. Lee and H. Kang, 2019. Estimation of carbon storage in coastal wetlands and comparison of different management schemes in South Korea. J. Ecol. Environ., 43: 8.
  7. Byun, S.K., 1989. Sea surface cold water near the southeastern coast of Korea: wind effect. J. Oceanogr. Soc. Korea, 24: 121-131.
  8. Chang, J.H. and J.Y. Choi, 1998. Seasonal accumulation pattern and preservation potential of tidal-flat sediments: Gomso Bay, West Coast of Korea. J. Korean Soc. Oceanogr., 3: 149-157.
  9. Choi, J.K., J.H. Ahn, Y.B. Son, D.J. Hwang and S.J. Lee, 2020. Application of GOCI to the estimates of primary productivity in the coastal waters of the East Sea. Korean J. Rem. Sens., 36(2): 237-247.
  10. Choi, J.Y. and Y.A. Park, 1993. Distribution and textural characters of the bottom sediments on the continental shelves, Korea. J. Oceanol. Soc. Korea, 28: 259-271.
  11. Choi, J.Y., 1993. Seasonal variations of suspended matters in the Keum Estuary and its adjacent coastal area. J. Oceanogr. Soc. Korea, 28(4): 272-280.
  12. Choi, J.Y., H.Y. Choi and M.S. Seo, 1995. Physical and sedimentological changes in the Keum estuary after the gate-close of Keum River weir. J. Korean Soc. Oceanogr., 30: 262-270.
  13. Goni, M.A., K.C. Ruttenberg and T.I. Eglinton, 1998. A reassessment of the sources and importance of land-derived OM in surface sediments from the Gulf of Mexico. Geochim. Cosmochim. Acta, 62(18): 3055-3075. https://doi.org/10.1016/S0016-7037(98)00217-8
  14. Goni, M.A., M.J. Teixeira and D.W. Perkey, 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Est. Coast. Shelf Sci., 57(5-6): 1023-1048. https://doi.org/10.1016/S0272-7714(03)00008-8
  15. Hedges, J., R. Keil and R. Benner, 1997. What happens to terrestrial organic matter in the ocean? Org. Geochem., 27(5-6): 195-212. https://doi.org/10.1016/S0146-6380(97)00066-1
  16. Hedges, J., W.A. Clack, P.D. Quay, J.E. Richey, A.H. Devol and M. Santos, 1986. Composition and fluxes of organic matter in the Amazon River. Limnol. Oceanogr., 31(4): 717-738. https://doi.org/10.4319/lo.1986.31.4.0717
  17. Howard, J., S. Hoyt, K. Isensee, E. Pidgeon and M. Telszewski, (Ed) 2014. Coastal Blue Carbon. International Union for Conservation of Nature (IUCN), 183 pp.
  18. Hwang, D.W., I.S. Lee, M. Choi, S.Y. Kim and H.G. Choi, 2013. Evaluation of organic matter and trace metal contamination in surface sediments around the Geum River estuary using sediment quality guidelines. Korean J. Fish Aquat. Sci., 46(6): 930-940. https://doi.org/10.5657/KFAS.2013.0930
  19. Hyun, S., T. Lee, J.S. Choi, D.L. Choi and H.J. Woo, 2003. Geochemical characteristics and heavy metal pollutions in the surface sediments of Gwangyang and Yeosu Bay, south coast of Korea. The Sea: J. Korean Soc. Oceanogr., 8(4): 380-391.
  20. Kang, J.W., S. Jang, S. Huh, D.H. Shin and S. Hyun, 2021. Sedimentation history and excess metal deposition in estuarine barrier-island system of the Nakdong River, South Korea. Mar. Pollution Bull., 169: 112499.
  21. Kapsimalis, V., L. Masse and J.-P. Tastet, 2004. Tidal impact on modern sedimentary facies in the Gironde Estuary, southwestern France. J. Coastal Res., SI 41: 1-11.
  22. Kim, A.R., S.H. Youn, M.H. Chung, S.C. Yoon and C.H. Moon, 2014. The influence of coastal upwelling on phytoplankton community in the southern part of East Sea, Korea. The Sea: J. Korean Soc. Oceanogr., 19(4): 287-301. https://doi.org/10.7850/jkso.2014.19.4.287
  23. Kim, H.R., D.C. Kim, Y.K. Seo, G.S. Lee and K.O. Kim, 2016. Geoacoustic Properties of Marine Sediment Adjacent the Southwestern Taean Peninsula, the Yellow Sea. J. Korean Soc. Mar. Environ. Energy, 19(4), 247-258. https://doi.org/10.7846/JKOSMEE.2016.19.4.247
  24. Kim, K.H., J.H. Cho and N.J. Park, 2000. Distribution and pollution history of heavy metals in Nakdong estuary sediments. The Sea: J. Korean Soc. Oceanogr., 5: 285-294.
  25. Kim, K.S. and N.I. Lee, 2003. Estimation of pollution loads flowing into Mokpo harbour-centering on pollution loads from ladn in dry case. J. Korean Soc. Mar. Environ. Engin., 6(1): 11-20.
  26. Kim, S.Y. and B.K. Lee, 2004. In situ particle size and volume concentration of suspended sediment in Seojin River estuary, determined by an optical instrument, 'LISST-100', J. Korean Fish. Sci., 37: 323-329. https://doi.org/10.5657/kfas.2004.37.4.323
  27. Kim, Y.G., M.S. Lee and J.H. Chang, 2019. Change of sedimentary environment in the tidal flat of the dammed Yeongsan River estuary, southwestern coast of Korea. J. Korean Soc. Mar. Environ. Safety, 25: 687-697. https://doi.org/10.7837/kosomes.2019.25.6.687
  28. Koo, B.Y., S.P. Kim, G.S. Lee and G.S. Chung, 2014. Seafloor morphology and surface sediment distribution of the southwestern part of the Ulleung Basin, East Sea. J. Korean Earth Sci. Soc., 35(2): 131-146. https://doi.org/10.5467/JKESS.2014.35.2.131
  29. Korea Marine Environment Management Corporation (KOEM), 2015. National Survey on Marine Ecosystem [West Sea.west part of South Sea] Annual Report, II. Coastal ecosystem, 11-1192000-000476-10, 390 pp.
  30. Korea Marine Environment Management Corporation (KOEM), 2016. National Survey on Marine Ecosystem [East Sea.east part of South Sea.Jeju] Annual Report, II. Coastal ecosystem, 11-1192000-000476-10, 358 pp.
  31. Korea Marine Environment Management Corporation (KOEM), 2017. National Survey on Marine Ecosystem [East Sea.West Sea.South Sea.Jeju] Annual Report, II. Coastal ecosystem, 11-1192000-000476-10, 667 pp.
  32. Korea Marine Environment Management Corporation (KOEM), 2018. National Survey on Marine Ecosystem [east part of South Sea.East Sea.Jeju] Annual Report, II. Coastal ecosystem, 11-1192000-000476-10, 566 pp.
  33. Korea Marine Environment Management Corporation (KOEM), 2019a. National Survey on Marine Ecosystem [West Sea.west part of South Sea] Annual Report, II. Coastal ecosystem, 11-1192000-000476-10, 599 pp.
  34. Korea Marine Environment Management Corporation (KOEM), 2019b. Protocol of National Survey on Marine Ecosystem, 11-1192000-000374-10, 138 pp.
  35. Korea Marine Environment Management Corporation (KOEM), 2020. National Survey on Marine Ecosystem [east part of South Sea.East Sea.Jeju] Annual Report, II. Coastal ecosystem, 11-1192000-000476-10, 430 pp.
  36. Lee, J., B. Kim, J. Noh, C. Lee, I. Kwon, B.C. Kwon, J. Ryu, J. Park, S. Hong, S. Lee, S.G. Kim, S. Son, H.J. Yoon, J. Yim, J. Nam, K. Choi and J.S. Khim, 2021. The first national scale evaluation of organic carbon stocks and sequestration rates of coastal sediments along the West Sea, South Sea, and East Sea of South Korea. Sci. Total Environ., 793: 148568.
  37. Lee, Y.J., B.K. Jeong, Y.S. Shin, S.H. Kim and K.H. Shin, 2013. Determination of the origin of particulate organic matter at the estuary of Youngsan River using stable isotope ratios (δ13C, δ15N). Korean J. Ecol. Environ., 46(2): 175-184. https://doi.org/10.11614/KSL.2013.46.2.175
  38. Lee, Y.J., J.O. Min, Y. Shin, S.H. Kim and K.H. Shin, 2011. Temporal and spatial variations of primary productivity in estuary of Youngsan River and Mokpo coastal areas. Korean J. Limnol., 44: 327-336.
  39. Lim, H.S. and K.Y. Park, 1998. Community structure of the macrobenthos in the soft bottom of Youngsan River estuary, Korea. J. Korean Fish. Soc., 31: 330-342.
  40. Mayer, L.M., 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta, 58(4): 1271-1284. https://doi.org/10.1016/0016-7037(94)90381-6
  41. Mayer, L.M., P.A. Jumars, G.L. Taghon, S.A. Macko and S. Trumbore, 1993. Low-density particles as potential nitrogenous foods for benthos. J. Mar. Res., 51: 373-389. https://doi.org/10.1357/0022240933223738
  42. Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Bjork, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger and B.R. Sillman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 9(10): 552-560. https://doi.org/10.1890/110004
  43. Mclusky, D.S., 1981. The Estuarine Ecosystem, John Wiley and Sons, New York, 215 pp.
  44. Nicolas, A. and R. Bhiwajee, 2021. Grain size analysis and total organic matter and carbonate contents of sediments on Saye de Malha and Nazareth Banks. WIO J. Mar. Sci., 2: 81-94. https://doi.org/10.4314/wiojms.si2021.2.6
  45. O'Donohue, M.J.H. and W.C. Dennison, 1997. Phytoplankton productivity response to nutrient concentrations, light availability and temperature along an Australian estuarine gradient. Estuaries, 20: 521-533. https://doi.org/10.2307/1352611
  46. Oh, J.K. and K.Y. Bang, 2003. Sedimentological linkage of depositional environments of Han River and Kyunggi Bay, Korea. The Sea: J. Korean Soc. Oceanogr., 8(3): 225-236.
  47. Oh, J.K., 1989. Depositional sedimentary environment in the Han river estuary and Kyung-gi Bay before the Han river's development. Yellow Sea Res., 2: 13-20.
  48. Oh, N.H., 2016. The loads and biogeochemical properties of riverine carbon. Korean J. Ecol. Environ., 49(4): 245-257. https://doi.org/10.11614/KSL.2016.49.4.245
  49. Park, C.K., K.D. Cho, S.H. Huh, S.K., Kim and C.H. Cho, 1986. Ecological survey of the Nakdong River estuary. Bull. Korean Fish. Tech. Soc., 22(4): 1-20.
  50. Park, G.S., 2004. Salinity distribution and ecological environment of Han River estuary. J. Korean Wetland Soc., 6(1): 149-166.
  51. Park, H.G. and G. Ock, 2017. Estimation of the total terrestrial organic carbon flux of large rivers in Korea using the National Water Quality Monitoring System. Korean J. Environ. Biol., 35(4): 549-556. https://doi.org/10.11626/KJEB.2017.35.4.549
  52. Pedersen, F. and S.E. Calvert, 1990. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? Amer. Assoc. Petrol. Geol. Bull., 74: 453-46.
  53. Perez, B.C., J.W. Jr. Day, L.J. Rouse, R.F. Shaw and M. Wang, 2000. Influence of Atchafalaya River discharge and winter frontal passage on suspended sediment concentration and flux in Fourleage Bay, Louisiana. Est., Coastal Shelf Sci., 50(2): 271-290. https://doi.org/10.1006/ecss.1999.0564
  54. Rogers, K., P.I. Macreadie, J.J. Kelleway and N. Saintilan, 2019. Blue carbon in coastal landscapes: A spatial framework for assessment of stocks and additionality. Sustain. Sci., 14: 453-467. https://doi.org/10.1007/s11625-018-0575-0
  55. Ryu, S.O., 2003. Spatial and temporal variation of grain size of the surface sediments in Kwangyang Bay, south coast of Korea. The Sea: J. Korean Soc. Oceanogr., 8: 340-348.
  56. Schlunz, B. and R. Schneider, 2000. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates. Int. J. Earth Sci., 88: 599-606. https://doi.org/10.1007/s005310050290
  57. Seo, M.S. and Y.S. Park, 2007. Geochemical characteristics of surface sediments in the Keum River estuary adjacent to coastal area. J. Fish Mar. Sci. Edu., 19: 1-7.
  58. Shin, C.W., 2019. Change of coastal upwelling index along the southeastern coast of Korea. J. Korean Soc. Oceanogr., 24: 79-91.
  59. Shin, M.S., K.S. Bae, S.J. Kang and J. H. Kim, 2006. A study on the topography and current change characteristic of the before and after construction at Geum River estuary dike. Korea J. Ocean Engineering Tech., 20(3): 61-66.
  60. Shin, M.S., Y. Lee, J.H. Park and B. Kim, 2012. Primary productivity of phytoplankton in an eutrophic river (Kum River system). J. Korean Soc. Water Environ., 28(1): 10-17.
  61. Thomas, R.L., 1969. A note on the relationship of grain size, clay content, quartz and organic caron in some Lake Erie and Lake Ontario sediments. J. Sediment. Res., 39(2): 803-809. https://doi.org/10.1306/74D71D34-2B21-11D7-8648000102C1865D
  62. Yang, J.S., J.Y. Jeong, J.Y. Heo, S.H. Lee and J.Y. Choi, 1999. Chemical mass balance of materials in the Keum River estuary 1. Seasonal distribution of nutrients. The Sea: J. Korean Soc. Oceanogr., 4(1), 71-79.
  63. Yang, S.R., H.S. Song, C.H. Moon, K.Y. Kwon and H.S. Yang, 2001. Changes in marine environment and primary production due to freshwater input in the Nakdong River estuary. Algae, 16(2): 165-177.
  64. Yang, S.R., H.S. Song, K.C. Kim, C. Park and C. Moon, 2005. Changes in environmental factors and primary productivity in the Seomjin River estuary. The Sea: J. Korean Soc. Oceanogr., 10(3): 164-170.
  65. Yoo, D.G., G.S. Lee, N.K. Kang, B.Y. Yi, G.S. Kong, G.Y. Kim, S.W. Chang, S. Yi and J. C. Kim, 2017. Stratigraphy and depositional history of Nakdong River Delta. J. Geol. Soc. Korea, 53: 619-630. https://doi.org/10.14770/jgsk.2017.53.5.619
  66. Yoo, S. and J. Park, 2009. Why is the southwest the most productive region of the East Sea/Sea of Japan? J. Mar. Syst., 78(2): 301-315. https://doi.org/10.1016/j.jmarsys.2009.02.014
  67. Yoon, S.H., K.H. Shin, M.S. Choi, H.I. Yi, 2010. Distributions and Sources of Bulk Organic Matter and Hydrocarbons in Surface Sediments of the West Coast of Korea. Proc. 2010 Fall Meet. Korean Soc. Oceanogr., p. 383.