DOI QR코드

DOI QR Code

Numerical Analysis of the Effect of a Three-Dimensional Baffle Structure with Variable Cross-Section on the Parallel Flow Field Performance of PEMFC

  • Xuejian Pei (College of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Fayi Yan (College of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Jian Yao (College of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • He Lu (College of Mechanical and Electronic Engineering, Shandong Jianzhu University)
  • Received : 2023.05.30
  • Accepted : 2023.07.28
  • Published : 2023.11.30

Abstract

In this study, a 3D model of the proton exchange membrane fuel cell is established, and a new 3D baffle structure is designed, which is combined with the parallel flow field and then optimized by numerical simulation methods. The number of baffles and the cross-sectional trapezoidal base angle are taken as the main variables, and their impacts on the performance indexes of the cathode side are analyzed. The results show that the 3D baffle can facilitate the convection and diffusion mass transfer of reactants, improve the uniformity of oxygen distribution, enhance the drainage capacity, and make the cell performance superior; however, too small angle will lead to excessive local convective mass flux, resulting in the decrease of the overall uniformity of oxygen distribution and lowering the cell performance. Among them, the optimal number of baffles and angle are 9 and 58°, respectively, which improves the net output power density by 10.8% than conventional flow field.

Keywords

Acknowledgement

This study was supported by the major scientific and technological innovation project of Shandong Province (2018cxgc0803).

References

  1. S. Thomas, A. Bates, S. Park, A. K. Sahu, S. C. Lee, B. R. Son, J. G. Kim, and D.-H. Lee, Appl. Energy, 2016, 165, 765-776.  https://doi.org/10.1016/j.apenergy.2015.12.011
  2. A. Baroutaji, A. Arjunan, M. Ramadan, J. Robinson, A. Alaswad, M. A. Abdelkareem, and A.-G. Olabi, Int. J. Thermofluids, 2021, 9, 100064. 
  3. X. Lu, Y. Qu, Y. Wang, C. Qin, and G. Liu, Energy Convers. Manag., 2018, 171, 1273-1291.  https://doi.org/10.1016/j.enconman.2018.06.065
  4. B. Yang, J. Li, Y. Li, Z. Guo, K. Zeng, H. Shu, P. Cao, and Y. Ren, Int. J. Hydrogen Energy, 2022, 47(17), 9986-10020.  https://doi.org/10.1016/j.ijhydene.2022.01.065
  5. M. K. Vijayakrishnan, K. Palaniswamy, J. Ramasamy, T. Kumaresan, K. Manoharan, T. K. R. Rajagopal, T. Maiyalagan, V. R. Jothi, and S.-C. Yi, Int. J. Hydrogen Energy, 2020, 45(13), 7848-7862.  https://doi.org/10.1016/j.ijhydene.2019.05.205
  6. T. Chen, Y. Xiao, and T. Chen, Energy Procedia, 2012, 28, 134-139.  https://doi.org/10.1016/j.egypro.2012.08.047
  7. W. Pan, P. Wang, X. Chen, F. Wang, and G. Dai, Energy Convers. Manag., 2020, 220, 113046. 
  8. J. Yao, F. Yan, X. Pei, Design and Analysis of Spider Bionic Flow Field for Proton Exchange Membrane Fuel Cell. J. Electrochem. Sci. Tech., 2022, 14(1), 38-50.  https://doi.org/10.33961/jecst.2022.00479
  9. X. Chen, Y. Chen, Q. Liu, J. Xu, Q. Liu, W. Li, Y. Zhang, Z. Wan, and X. Wang, Energy Rep., 2021, 7, 336-347.  https://doi.org/10.1016/j.egyr.2021.01.003
  10. B. H. Lim, E. H. Majlan, W. R. W. Daud, M. I. Rosli, and T. Husaini, Int. J. Hydrogen Energy, 2017, 42(14), 9210-9218.  https://doi.org/10.1016/j.ijhydene.2016.03.189
  11. H. Heidary, M. J. Kermani, and B. Dabir, Energy Convers. Manag., 2016, 124, 51-60.  https://doi.org/10.1016/j.enconman.2016.06.043
  12. H. Heidary, M. J. Kermani, S. G. Advani, and A. K. Prasad, Int. J. Hydrogen Energy, 2016, 41(16), 6885-6893.  https://doi.org/10.1016/j.ijhydene.2016.03.028
  13. Y. Yin, X. Wang, X. Shangguan, J. Zhang, and Y. Qin, Int. J. Hydrogen Energy, 2018, 43(16), 8048-8062.  https://doi.org/10.1016/j.ijhydene.2018.03.037
  14. Y. Wang, Z. Y. Sun, and L. Yang, Energy Convers. Manag., 2022, 252, 115077. 
  15. X. Chen, Z. Yu, C. Yang, Y. Chen, C. Jin, Y. Ding, W. Li, and Z. Wan, Int. J. Hydrogen Energy, 2021, 46(19), 11127-11139.  https://doi.org/10.1016/j.ijhydene.2020.06.057
  16. F. Yan, X. Pei, and J. Yao, Ionics, 2023, 29, 695-709. 
  17. H. Chen, H. Guo, F. Ye, C. F. Ma, Q. Liao, and X. Zhu, Int. J. Energy Res., 2019, 43(7), 2910-2929.  https://doi.org/10.1002/er.4461
  18. Z. Dong, Y. Qin, J. Zheng, and Q. Guo, Int. J. Hydrogen Energy, 2023, 48(67), 26356-23674. 
  19. H. Chen, H. Guo, F. Ye, and C. F. Ma, J. Power Sources, 2020, 472, 228456. 
  20. Y. Yin, S. Wu, Y. Qin, O. N. Otoo, and J. Zhang, Appl. Energy, 2020, 271, 115257. 
  21. J. Bachman, M. Charvet, A. Santamaria, H.-Y. Tang, J. W. Park, and R. Walker, Int. J. Hydrogen Energy, 2012, 37(22), 17172-17179.  https://doi.org/10.1016/j.ijhydene.2012.08.023
  22. X. Li and I. Sabir, Int. J. Hydrogen Energy, 2005, 30(4), 359-371.  https://doi.org/10.1016/j.ijhydene.2004.09.019
  23. J. Yao, F. Yan, and X. Pei, Chem. Pap., 2023, 77, 935-946. 
  24. J. Shen, L. Zeng, Z. Liu, and W. Liu, Heat Mass Transfer, 2019, 55, 811-822.  https://doi.org/10.1007/s00231-018-2473-5
  25. H.-W. Wu, Appl. Energy, 2016, 165, 81-106.  https://doi.org/10.1016/j.apenergy.2015.12.075
  26. B. Ramos-Alvarado, A. Hernandez-Guerrero, F. Elizalde-Blancas, and M. W. Ellis, Int. J. Hydrogen Energy, 2011, 36(20), 12965-12976.  https://doi.org/10.1016/j.ijhydene.2011.07.017
  27. M. Z. Chowdhury and B. Timurkutluk, Energy, 2018, 161, 104-117.  https://doi.org/10.1016/j.energy.2018.07.143
  28. F. Yan, J. Yao, and X. Pei, Int. J. Electrochem. Sci., 2022, 17(7), 220721. 
  29. C. Xu, H. Wang, and T. Cheng, Int. J. Hydrogen Energy, 2023, 48(11), 4418-4429.  https://doi.org/10.1016/j.ijhydene.2022.10.028
  30. M. Z. Chowdhury and Y. E. Akansu, Int. J. Hydrogen Energy, 2017, 42(40), 25686-25694.  https://doi.org/10.1016/j.ijhydene.2017.04.079
  31. H. Liu, W. Yang, J. Tan, Y. An, and L. Cheng, Energy Convers. Manag., 2018, 176, 99-109.  https://doi.org/10.1016/j.enconman.2018.09.024
  32. S.-W. Perngand H.-W. Wu, Appl. Energy, 2015, 143, 81-95.  https://doi.org/10.1016/j.apenergy.2014.12.059
  33. R. Yadav and P. S. Fedkiw, J. Electrochem. Soc., 2012, 159, B340. 
  34. R. Kuwertz, C. Kirstein, T. Turek, and U. Kunz, J. Membr. Sci., 2016, 500, 225-235. https://doi.org/10.1016/j.memsci.2015.11.022