DOI QR코드

DOI QR Code

A Method on Automatically Creating an Ontology by Extracting Various Relationships between Terms

용어 간의 다양한 관계 추출을 통해 온톨로지를 자동으로 생성하는 방법

  • Received : 2023.07.31
  • Accepted : 2023.08.26
  • Published : 2023.08.30

Abstract

In this paper, we propose a method of automatically creating an ontology by extracting various relationships between terms necessary for constructing an ontology of a specific domain. The extracted relationship is constructed as an ontology by encoding it into an axiomatic set in the structure of the ontology. To solve efficiently, we represent the search space of the set as an integer programming problem, and we reduce the matrix by using a simple reduction that eliminates rules that are not very helpful for optimization. In conclusion, this paper proposes a way to generalize patterns using given data, reduce search space while maintaining useful patterns, and automatically generate efficient ontology using extracted relationships by applying algorithms composed of structured ontology.

본 논문에서는 특정 도메인의 온톨로지 구성에 필요한 용어 간의 다양한 관계를 추출하여 자동으로 온톨로지를 생성하는 방법을 제안하고자 한다. 추출된 관계를 온톨로지의 구조에 공리 집합으로 인코딩하여 온톨로지로 구성한다. 효율적으로 해결하기 위해 집합의 검색 공간을 정수 프로그래밍 문제로 표현하며, 최적화를 위해 별로 도움이 되지 않는 규칙은 제거하는 단순한 축소를 사용하여 행렬을 감소시킨다. 결론적으로 본 논문에서는 주어진 데이터를 이용하여 패턴을 일반화하고, 유용한 패턴을 유지하면서 검색 공간을 줄이는 방법을 제시하며, 구조화된 온톨로지로 구성하는 알고리즘을 적용하여 추출된 관계를 이용해 자동으로 효율적인 온톨로지로 생성하는 방법을 제안한다.

Keywords

References

  1. Y. T. Kim, J. H. Lim, and C. S. Kim, "UML changes for efficient ontology development," Journal of the Korea Academia-Industrial Cooperation Society, vol. 9, no. 2, pp. 415-421, 2008.  https://doi.org/10.5762/KAIS.2008.9.2.415
  2. Y. T. Kim and C. S. Kim, "A method for extracting relationships between terms using pattern-based technique," Journal of the Korea Information Processing Society, vol. 7, no. 8, pp. 281-286, 2018. 
  3. J. W. Seo, Y. T. Kim, H. T. Kong, J. H. Lim, and C. S. Kim, "A method based on ontology for detecting errors in the software design," Journal of the Korea Academia-Industrial Cooperation Society, vol. 10, no. 10, pp. 2676-2683, 2009.  https://doi.org/10.5762/KAIS.2009.10.10.2676
  4. M. E. Voorhees, "Using WordNet to disambiguate word senses for text retrieval," SIGIR '93: Proceedings of the 16th annual international ACM SIGI conference on Research and development in information retrieval, pp. 171-180, 1993. 
  5. M. A. Hearst, "Automatic acquisition of hyponyms from large text corpora," In Proceedings of the 14th conference on Computational linguistics, pp. 539-545, 1992. 
  6. P. Cimiano and S. Staab, "Learning by googling," SIGKDD Explor. Newsl., vol. 6, no. 2, pp. 24-33, 2004.  https://doi.org/10.1145/1046456.1046460
  7. H. Yu, V. Hatzivassiloglou, C. Friedman, A. Rzhetsky, and W. J. Wilbur, "Automatic extraction of gene and protein synonyms from medline and journal articles," In Proc. AMIA Symp, pp. 919-923, 2002. 
  8. H. Yu and E. Agichtein, "Extracting synonymous gene and protein terms from biological literature," OUP Bioinformatics vol. 19, no. 1, pp. 340-349, 2003.  https://doi.org/10.1093/bioinformatics/btg1047
  9. S. Soderland, "Learning information extraction rules for semi-structured and free text," Machine Learning, vol. 34, no. 1-3, pp. 233-272, 1999.  https://doi.org/10.1023/A:1007562322031
  10. P. Cimiano, A. Hotho, and S. Staab, "Learning concept hierarchies from text corpora using formal concept analysis," Journal of Articial Intelligence Research, vol. 24, pp. 305-339, 2005.  https://doi.org/10.1613/jair.1648
  11. F. Suchanek, M. Sozio, and G. Weikum, "SOFIE: A self-organizing framework for information extraction," In International World Wide Web Conference (WWW 2009), pp. 631-640, 2009.