DOI QR코드

DOI QR Code

Hydrophilic Treatment of Porous Substrates for Pore-Filling Membranes

세공충진막을 위한 다공성 지지체 친수화 처리

  • Dahye Jeong (Department of Green Engineering, College of Engineering, Sangmyung University) ;
  • Minyoung Lee (Department of Green Engineering, College of Engineering, Sangmyung University) ;
  • Jong-Hyeok Park (Department of Green Engineering, College of Engineering, Sangmyung University) ;
  • Yeri Park (Department of Green Engineering, College of Engineering, Sangmyung University) ;
  • Jin-Soo Park (Department of Green Engineering, College of Engineering, Sangmyung University)
  • 정다혜 (상명대학교 공과대학 그린화학공학과) ;
  • 이민영 (상명대학교 공과대학 그린화학공학과) ;
  • 박종혁 (상명대학교 공과대학 그린화학공학과) ;
  • 박예리 (상명대학교 공과대학 그린화학공학과) ;
  • 박진수 (상명대학교 공과대학 그린화학공학과)
  • Received : 2023.11.06
  • Accepted : 2023.11.06
  • Published : 2023.11.30

Abstract

In this study, we employed anionic, cationic, and nonionic surfactants for the hydrophilization of porous substrates used in the fabrication of pore-filling membranes. We investigated the extent of hydrophilization based on the type of surfactant, its concentration, and immersion time. Furthermore, we used the hydrophilized substrates to produce pore-filling anion exchange membranes and compared their ion conductivity to determine the optimal hydrophilization conditions. For the ionic surfactants used in this study, we observed that hydrophilization progressed rapidly from the beginning of immersion when the applied concentration was 3.0 wt%, compared to lower concentrations (0.05, 0.5, and 1.0 wt%). In contrast, for the relatively larger molecular weight non-ionic surfactants, smooth hydrophilization was not observed. There was no apparent correlation between the degree of hydrophilization and the ion conductivity of the anion exchange membrane. This discrepancy suggests that an excessive hydrophilization process during the treatment of porous substrates leads to excessive adsorption of the surfactant on the sparse surfaces of the porous substrate, resulting in a significant reduction in porosity and subsequently decreasing the content of polymer electrolyte capable of ion exchange, thereby greatly increasing the electrical resistance of the membrane.

본 연구에서는 세공충진막 제조를 위해 활용되는 다공성 지지체의 친수화 처리를 위해서 음이온성, 양이온성, 비이온성 계면활성제를 사용하였으며, 계면활성제 종류, 농도 및 함침 시간에 따른 친수화 정도를 확인하였다. 또한 친수화 처리한 지지체를 이용하여 세공충진형 음이온교환막을 제조하고 이온전도도를 비교하여 최적의 친수화 조건을 선정하였다. 본 연구에서 사용한 이온성 계면활성제의 경우에는 함침 적용 농도가 3.0 wt% 이상일 때 함침 초기부터 다른 농도(0.05, 0.5 및 1.0 wt%)에 비해 급격하게 친수화가 진행되는 것을 관찰할 수 있었다. 그에 비해 분자량이 상대적으로 큰 비이온성 계면활성제의 경우는 친수화 진행이 원활하지 않은 것을 관찰할 수 있었다. 친수화 정도와 음이온교환막의 이온전도도와의 상관성이 나타나지 않았는데, 이러한 이유는 다공성 지지체의 친수화 공정 시 과도한 친수화 과정은 다공성 지지체의 소수 표면에 계면활성제가 과도하게 흡착하게 되어 기공률 감소가 커지게 되고 이를 통해 이온을 교환할 수 있는 고분자 전해질의 함량이 낮아지게 됨으로써 막의 전기적 저항을 크게 증가시키는 결과를 초래하게 되는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제번호: PJ016253)을 통해 지원받았습니다.

References

  1. J. Ran, L. Wu, Y. He, Z. Yang, C. Jiang, L. Ge, E. Bakangura, and T. Xu, Ion exchange membranes: New developments and applications, J. Membr. Sci., 522, 267-291 (2017). https://doi.org/10.1016/j.memsci.2016.09.033
  2. F. Xu, C. Innocent, and G. Pourcelly, Electrodialysis with ion exchange membranes in organic media, Sep. Purif. Technol., 43(1), 17-24 (2005). https://doi.org/10.1016/j.seppur.2004.09.009
  3. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, Sulfonated hydrocarbon membranes for mediumtemperature and low-humidity proton exchange membrane fuel cells (PEMFCs), Prog. Polym. Sci., 36(11), 1443-1498 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  4. W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, Recent progress in redox flow battery research and development, Adv. Funct. Mater., 23(8), 970-986 (2013). https://doi.org/10.1002/adfm.201200694
  5. B. E. Logan and M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, 488, 313-319 (2012). https://doi.org/10.1038/nature11477
  6. Y. Leng, G. Chen, A. J. Mendoza, T. B. Tighe, M. A. Hickner, and C.-Y. Wang, Solid-state water electrolysis with an alkaline membrane, J. Am. Chem. Soc., 134(22), 9054-9057 (2012). https://doi.org/10.1021/ja302439z
  7. J. C. Bu, W. S. Jung, D. B. Lim, Y.-J. Shim, and H.-S. Cho, Research trend on precious metal-based catalysts for the anode in polymer electrolyte membrane water splitting, J. Korean Electrochem. Soc., 25(4), 154-161 (2022).
  8. J.-H. Park, M. Akter, B.-S. Kim, D. Jeong, M. Lee, J. Shin, and J.-S. Park, Ionomer binder in catalyst layer for polymer electrolyte membrane fuel cell and water electrolysis: An updated review, J. Korean Electrochem. Soc., 25(4), 174-183 (2022).
  9. J. Kim and K. Lee, Research trend in electrocatalysts for anion exchange membrane water electrolysis, J. Korean Electrochem. Soc., 25(2), 69-80 (2022).
  10. S. Kim, H. Kwon, H. Lee, N. Jung, B. Bae, and D. Shin, Electrochemical method for measurement of hydroxide ion conductivity and CO2 poisoning behavior of anion exchange membrane, J. Korean Electrochem. Soc., 25(2), 88-94 (2022).
  11. E. Yuk, H. Lee, N. Jung, D. Shin, and B. Bae, Electrochemical characteristics of electrode by various preparation methods for alkaline membrane fuel cell, J. Korean Electrochem. Soc., 24(4), 106-112 (2021).
  12. S. C. Yang, W.-S. Kim, J. Choi, Y.-W. Choi, N. Jeong, H. Kim. J.-Y. Nam, H. Jeong, and Y. H. Kim, Fabrication of photocured anion-exchange membranes using water-soluble siloxane resins as cross-linking agents and their application in reverse electrodialysis, J. Membr. Sci., 573, 544-553 (2019). https://doi.org/10.1016/j.memsci.2018.12.034
  13. T. A. Zawodzinski Jr, T. E. Springer, F. Uribe, and S. Gottesfeld, Characterization of polymer electrolytes for fuel cell applications, Solid State Ion., 60(1-3), 199-211 (1993). https://doi.org/10.1016/0167-2738(93)90295-E
  14. T. Lehtinen, G. Sundholm, S. Holmberg, F. Sundholm, P. Bjornbom, and M. Bursell, Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells, Electrochim. Acta, 43(12-13), 1881-1890 (1998). https://doi.org/10.1016/S0013-4686(97)10005-6
  15. K. Scott, W. M. Taama, and P. Argyropoulos, Performance of the direct methanol fuel cell with radiation-grafted polymer membranes, J. Membr. Sci., 171(1), 119-130 (2000). https://doi.org/10.1016/S0376-7388(99)00382-8
  16. I. Honma, Y. Takeda, and J. M. Bae, Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules, Solid State Ion., 120(1-4), 255-264 (1999). https://doi.org/10.1016/S0167-2738(98)00562-1
  17. T. Yamaguchi, F. Miyata, and S. Nakao, Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell, J. Membr. Sci., 214(2), 283-292 (2003). https://doi.org/10.1016/S0376-7388(02)00579-3
  18. S. Jiang, H. Sun, H. Wang, B. P. Ladewig, and Z. Yao, A comprehensive review on the synthesis and applications of ion exchange membranes, Chemosphere, 282, 130817 (2021).
  19. H.-K. Kim, M.-S. Lee, S.-Y. Lee, Y.-W. Choi, N.-J. Jeong, and C.-S. Kim, High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer, J. Mater. Chem. A, 3(31), 16302-16306 (2015). https://doi.org/10.1039/C5TA03571F
  20. C. Bi, H. Zhang, Y. Zhang, and S. Xiao, Hydrophilic treatment poly(tetrafluoroethylene) reinforced sulfonated poly(ether ether ketone) composite membrane for proton exchange membrane fuel cell application, J. Power Sources, 194(2), 838-842 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.008
  21. J.-P. Kim, H.-H. Nam, J.-H. Ryu, J.-J. Kim, J.-H. Bae, J. H. Kim, and Y. Kwon, Effect of surfactant treatment on the microfiltration performance of a ceramic membrane, J. Korean Ind. Eng. Chem., 12(5), 489-493 (2001).
  22. D. B. Miraglia, J. L. Rodriguez, R. M. Minardi, and P. C. Schulz, Critical micelle concentration and HLB of the sodium oleate-hexadecyltrimethylammonium bromide mixed system, J. Surfactants Deterg., 14(3), 401-408 (2011). https://doi.org/10.1007/s11743-010-1239-y