

글_ 이 지용 석사과정·김명길 교수 / 성균관대학교 신소재공학과

1. 서론

지속적인 도시화, 산업화, 그리고 에너지 소 비의 증가로 인해 다양한 환경 문제와 에너지 공급의 지속 가능성에 대한 관심이 전례 없이 높아지고 있다. 에너지 자원의 고갈과 온실 가 스 배출로 인한 기후 변화는 인류사회의 지속 적인 발전의 가장 큰 위협이며, 이를 극복하 는 지속 가능하며 보다 높은 효율성을 가지는 새로운 에너지 솔루션의 필요성이 더욱 커지 고 있다. 이에 따라 풍력발전, 태양전지, 조력 발전, 핵융합기술 등의 다양한 에너지 기술에 대한 활발한 연구개발이 진행되고 있으며, 최 근 기존 화석연료 기반의 에너지 체계를 보완 하는 역할들로 점차 그 비중이 증가하고 있다. 그러나 현재까지 인류가 사용하는 대다수의 에너지는 화석연료에 기반하고 있으며, 화석 연료의 사용중에 대다수의 에너지는 폐열로서 버려지고 있어, 기존 화석연료 사용의 효율화 를 위한 새로운 해결책이 절실하다. 이에 따라 폐열 등 버려지는 에너지를 재활용하여 전기 에너지로 변환하는 에너지 하베스팅 기술이 주목을 받고 있으며, 열전소자(thermoelectric device)는 혁신적인 에너지 변환 기술로서 중 요한 역할을 수행하고 있다[1,2].

그림 1(a)와 같이, 열전소재는 열에너지를 전기에너지로 바꾸는 seebeck 효과나 전기에 너지를 열에너지로 바꾸는 peltier 효과를 이 용하여, 전기를 생산하거나, 열을 발생 혹은 냉각시키는 소재이다. 열전소재의 경우, 일반 적으로 서로 다른 물질의 접합면에서 온도차 가 발생했을 때 생기는 기전력 차이로 인해 전 류가 생성되는 현상을 이용하여 간단히 발전 을 일으킬 수 있는데, 동일한 온도 차이에 대해

2023 Vol. 36,

No

그림 1 ▶ (a) 열전발전 및 열전냉각 소자의 동작 원리 [3] 및 (b) 저온 열원부 300 K에 대한 온도와 zT 변화에 따른 열전발전 소자의 동작 효율 [4].

어떠한 정도의 기전력이 발생되는지를 나타내 는 물질의 특성을 seebeck 계수(α)라고 하며 그 값은 다음 식 (1)과 같다.

$$\alpha = \frac{\Delta V}{\Delta T} [\mu V/K] \tag{1}$$

$$zT = \frac{\alpha^2 \sigma T}{k} \tag{2}$$

이러한 seebeck 계수는 일반적으로 금속의 경우 ~수 μV/K로 매우 작은 반면(금 1.5 μV/K, 은 1.5 μV/K, 구리 1.5 μV/K 등) 반도체에서는 ~수백 μV/K에 이르며, 이 값이 크면 열전효과 로 인해 발생하는 기전력이 증가하므로 더 우 수한 열전소재로 작용할 수 있다. 또한, 물질의 열전 특성을 평가하는 주요 지표로 zT값(figure of merit)을 활용하며 이는 식 (2)와 같이 표현 된다. 이때, zT값은 온도 차에 따른 seebeck 계 수(α), 전기전도도(σ), 열전도도(κ), 절대온도 (T)에 의해 결정된다. 그림 1(b)에서 보여지듯 이, 뛰어난 열전효과를 위해선 zT값이 클수록 유리하며, 이를 위해선 전기전도도가 높고, 열 전도도가 낮아야 한다.

이러한 두 열원의 온도 차이를 이용하는 열 전소재를 이용한 열전소자는 기존의 내연기관 과 달리 기계적인 구동부가 필요하지 않아 높 은 신뢰성을 달성할 수 있고, 크기에 상관없이 일정한 열효율을 달성할 수 있어 고신뢰성 및 소형화에 유리하다. 이를 이용하여 심우주 탐 사용 발전소자, 소형 냉각장치, 내연기관의 폐 열을 회수하여 차량 전원을 공급하는 에너지 하베스터 등의 다양한 분야에 활용되고 있다 (그림 2).

열전소재는 그림 1(b)에서 보여지듯이 현재 상용화된 zT = 0.7~1 수준에서는 기존 열기관 에 대비하여 낮은 열효율을 가지고 있다. 최 근 20년간 이러한 열전소재의 성능은 나노구 조화, 포논유리, 밴드조절 등의 다양한 접근법 을 통해 비약적으로 향상되어왔다 [7-9]. 특히 여러한 소재군들 중에 높은 성능을 보여주는 열전소자의 핵심 소재인 Bi₂Te₃ PbTe, Sb₂Te₃,

그림 2 ▶ 열전발전 및 열전냉각 기술의 응용 [5,6].

GeTe 등의 화합물은 모두 텔루륨(tellurium)을 포함하고 있는 소재들이다. 이는 칼코젠족에 속하는 원소인 텔루륨은 열전소자로 활용되기 에 적절한 전기전도도와 열전도도를 갖고 높 은 zT값을 갖는 등 뛰어난 열전성능을 보이며 안정성과 내구성이 뛰어나다는 장점이 있기 때문이다. 더욱이 과거에는 단일원소 열전소 재로는 크게 주목받지 못했지만, 최근 들어 텔 루륨 단일원소 열전소재에 관한 여러 연구가 보고되며 큰 주목을 받고 있다.

본 기고에서는 다양한 열전소재군 중에 텔루 륨의 열전소재 특성에 대한 분석을 중점적으 로 다루고자 한다. 또한 기존 활발히 연구되어 왔던 텔루륨을 포함하는 금속 텔루륨화물 기 반의 다양한 열전소재들을 소개하여 열전소재 의 다양한 활용 분야와 기술적 중요성을 이해 하는 데 도움을 제공하고자 한다.

2. 단일원소계 Te의 열전소재 특성

2.1 낮은 격자열전도도와 높은 zT(figure of merit)값

칼코젠(chalcogen)족에 속하는 원소인 텔 루륨은 그림 3(a)와 같이 삼방정계 결정구조 (P3,21)를 가지며 p형 원소 반도체로 그 자체 로는 열전소자로 고려되는 경우는 적으며 다 른 성분들과 결합될 때 훨씬 뛰어난 성능을 나 타내기에 일반적으로 다른 원소들과 열전 화 합물을 합성하여 열전소자를 제작한다. 하 지만 텔루륨은 그림 3(b)와 같이 내인적으로 nested된 가전자대가 존재하여 정공의 통로 역 할을 하기에 IV족과 III-V족 반도체처럼 우수 한 전기적 성능이 예상된다 [10]. 특히 정공 이 동도가 단결정에서 약 700 cm²/Vs 수준의 매 우 우수한 성능을 보여주어, 최근 이러한 텔루 륨기반의 전자소재 응용에 대한 관심이 폭발 적으로 증가하고 있다 [11]. 더욱이, 강한 spinorbital coupling으로 인해 가전자대의 가장자 리에서 band splitting과 quadruple 밴드의 축

그림 3 ▶ (a) 텔루륨의 Helical chain 구조 및 Helical chain 간 반데르발스 결합으로 이루어진 2D 구조 [14] 및 (b) 텔루륨의 Nested band structure [10].

퇴가 발생한다는 내용이 보고되면서 텔루륨 열전소자 연구에 대한 관심이 높아지고 있다 [12,13].

텔루륨은 상온에서 납-칼코젠 원소계 열전 소재와 비슷한 수준인 1.6 W/m·K의 격자열 전도도를 가지며 이는 IV족과 III·V족 반도체 의 열전도도보다 훨씬 낮은 수준이다 [10,15]. 이러한 결과는 무거운 원자량과 상대적으로 복잡한 결정구조에서 기인한 것이며 도핑의 정도가 큰 텔루륨의 경우 포논 산란에 의한 강 한 온도 의존성을 보인다 [16]. 밴드구조를 이 용해 계산한 값과 실제 측정값을 비교하였을 때, 측정된 값은 계산값에 미치지 못하기 때문 에 고용체를 만들거나 나노구조화하는 방식으 로 격자열전도도를 더욱 감소시킬 수 있을 것 으로 예상된다 [17].

이러한 우수한 전자구조 및 열전도도의 특성 에 기반하여, 최근 텔루륨의 열전소재의 성능을

그림 4 ▶ (a) 텔루륨의 열전도도 특성 및 (b) 다양한 캐리어 농도에 따른 p형 다결정 텔루륨의 온도에 따른 figure of merit[zT]값 [10].

나타내는 zT값이 SiGe나 BiSb 등과 같은 열전 소자와 비슷한 수준(~1)인 것으로 보고되었다 [10]. 또한, 화합물 반도체와 이를 활용한 열전 소자는 합금 제조시 석출(precipitation), 분리 (segregation), 휘발(volatilization) 등의 문제가 발생하기도 하는데 원소반도체인 텔루륨은 이 러한 문제에서 자유로우며, 300~700 K에서 높 은 zT값을 보이기 때문에 이 온도 영역대를 매 울 수 있다는 점에서 열전소자로서 텔루륨은 높은 가능성을 보여주고 있다 (그림 4(b)).

2.2 텔루륨의 나노구조화에 따른 열전성능 향상

3D Bulk 텔루륨은 내인적으로 nested된 가 전자대에서 기인한 높은 power factor와 낮은 격자열전도도로 인해 1에 달하는 zT값을 보이 며, 다른 물질과 합금을 이루거나 나노구조화 를 통해 더 높은 zT값을 보일 것으로 예상된 다 [10,18]. 텔루륨은 꽤 오랜 기간 뛰어난 열전 소자 성능을 보일 것으로 평가되었으나, 실제 연구나 소자 개발은 미진했다. 하지만 최근 들 어 다양한 텔루륨 단일원소 기반 열전소자 연 구들이 활발히 진행되고 있으며, 특히 2D 구조 에서의 열전성능에 관한 연구결과들이 보고되 고 있다.

2018년에는 2D 구조 β-Te의 격자열전도도 가 상온에서 체인과 체인 방향으로는 2.16 W/ m・K, 체인 방향으로는 4.08 W/m・K 수준으 로 매우 낮은 값을 가지며 0.8의 zT값을 갖는 다는 연구결과가 보고를 필두로, 수열합성법 으로 제작된 30 nm 두께의 텔루륨 나노필름 열전소자가 413 μV/K의 seebeck 계수, 31.7 μ W/cm・K²의 power factor, 0.63의 zT값을 보 인다는 것이 보고되었다 [19,20].

또한, 2D 텔루륨의 육방정계 α-Te 구조를 갖 는 monolayer Tellurene이 300 K에서 1,300 μ V/K의 seebeck 계수와 ~1의 zT값을 보인다는 계산적 연구결과를 보고하였다 [21]. 이는 실험

그림 5 ▶ 2D 텔루륨의 온도와 결정방향에 따른 격자열전도도 [19].

이 동반되지 않고 순전히 이론적 계산으로 얻 은 값이지만, 이러한 연구결과들은 2D 구조의 텔루륨이 bulk 구조일 때보다 구조적으로 단일 원소 열전소자 응용 가능성이 크다는 것을 보 여준다.

가장 최근에는 텔루륨에 1%의 Fe₂As 도핑을 통해 twisted grain을 유도하여 기존 이방성을 가지던 것을 등방성을 갖게 하여 뛰어난 성능 을 보이는 텔루륨 단일원소 기반 열전소자를 보고하였다 [22]. 텔루륨에 Fe₂As를 도핑하면 텔루륨 결정들이 twist되어 성장하게 되는데, 이로 인해 텔루륨의 helical chain들이 무질서 하게 정렬되며 전기적으로 textured되고 열적 으로 무질서한 결정 방향성을 갖게 하여 다결 정 텔루륨보다 뛰어난 전기전도도와 낮은 열 전전도를 갖게 된다. 이러한 특성을 이용한 열 전소재는 623 K에서 1.42의 ZT값을 보였으며, 이는 지금껏 보고된 텔루륨 단일원소 열전소 재로서 최고 성능치를 기록하였다.

3. Te 원소를 포함한 다양한 열전소재 화합물

3.1 PbTe 기반 열전소재

그림 6(a)와 같이 PbTe는 높은 대칭성을 가 진 입방정계 결정구조를 가지며, IV-VI 화합물 열전소자(PbTe, PbSe, GeTe)들 중 가장 활발 히 연구된 PbTe 열전소재는 500~900 K의 중온 영역대에서 주로 사용된다. PbTe 열전소자는 700~850 K의 넓은 영역대에서 n형, p형 열전 소자 모두 1.4에 달하는 zT값을 보인다고 보고 되어 왔다 [24]. 최근에는 그림 6(b)와 같이, 열 전도도의 저감 및 power factor의 향상을 위한 다양한 여러 제조 방법이 개발되어왔다. 이를 바탕으로 그림 7에서 보여지듯이 p형은 ~2.5, n형은 ~2.2 수준의 zT값을 갖는 소자들이 보고 되었다 [25-27].

PbTe에 여러 원소를 도핑하여 격자열전전 도를 낮추는 방식으로 열전효과를 극대화할

그림 6 > (a) 입방정계 PbTe의 결정구조 [23] 및 (b) PbTe기반 열전소재 최적화 전략 [3].

그림7 ▶ 온도에 따른 (a) p형 PbTe의 zT값과 (b) n형 PbTe의 zT값 [23].

수 있는데 Na 도핑을 통해 반도체 물질 내에 서 두 개의 다른 에너지 대역이 전자 수송에 기여하는 현상인 두 대역 전도행동(two-band conduction behavior)을 유도하여 전기전도도 를 높이고 zT값을 크게 향상시킨 연구가 보고 되었다 [28]. 또한, 텔루륨과 같은족 원소인 셀 레늄과 합금을 제조해 일종의 점결함 형태로 존재하게 하여 포논 산란을 통한 격자열전도 도를 감소시키고 밴드구조 엔지니어링을 통 한 전자 이동 특성을 조절하기도 한다. 이 외 에도 PbTe의 나노구조화를 이용해 zT값을 향 상시키는 방법도 보고되었으나 이는 포논의 경계산란이 중요하게 작용하는 낮은 온도 영 역대에서의 평균 zT값 향상 등 여러 개선점이 필요하다 [29].

3.2 GeTe 기반 열전소재

GeTe는 다른 열전소자들에 비해 잘 알려 지지는 않았으나, 최근 들어 큰 주목을 받고

있는 IV-VI족 화합물 열전소자이다. 고온에 서 등축정계인 GeTe는 720 K 정도에서 마름 모계 GeTe로 상변화를 하게 되는데, 이 마름 모계 GeTe는 [111] 방향으로 찌그러져 있으 며 이렇게 대칭이 깨진 구조로 인해 확연히 밴 드구조에서 차이를 보이게 된다 (그림 8(a)). 등축정계 GeTe는 PbTe나 SnTe와 같은 밴드 구조를 갖지만 마름모계 GeTe는 비대칭 구 조로 인해 높은 전체 밴드 축퇴(high overall band degeneracy)와 전기적 특성 향상을 보이 게 된다 [30]. 과거에는 열전소자로 대칭성이 큰 물질이 요구되었기에 고온에서의 등축정 계 GeTe 연구가 활발히 진행되었으며, 2이상 의 zT값을 갖는 GeTe 열전소자가 보고되었다 [31,32]. 최근에는 대칭성이 작은 구조의 GeTe 가 열전소자로서 유리하다는 연구결과가 보 고되면서, 평균 zT값이 급속도로 높아지는 추 세이다 [33].

Bi2Te3 열전소자와 비교했을 때, GeTe가 비

그림 8 ▶ (a) 입방정계 GeTe 결정구조와 마름모계 GeTe 결정구조 [35] 및 (b) GeTe 열전소자의 zT 발전동향 [36].

교적 높은 성능을 보이기에 상온에 가까운 온 도 영역대에서도 활용될 GeTe 기반 열전소자 의 연구가 요구되고 있다. 또한 p형 GeTe 열전 소자에 비해 n형 GeTe 열전소자의 성능은 현 저히 떨어지지만, 이론상 zT값이 4가 넘을 것 이라는 이론적 연구결과가 존재하는만큼, p형 소자와 더불어 균형있는 n형 소재의 발전이 이 루어진다면 뛰어난 성능을 보이는 GeTe 열전 소자 응용에 도움을 줄 것이다 [34].

3.3 Bi₂Te₃ 기반 열전소재

가장 잘 알려진 열전물질인 Bi₂Te₃(공간군: R-3m, hexagonal)는 상온 부근에서 뛰어난 열 전 성능을 보인다. 현재 상용화에 가장 성공했 다고 평가받고 있으며, zT값은 상온(300 K)에 서 0.9~1.0 수준이다 [37]. Bi₂Te₃는 그림 9(a)와 같이 Te⁽¹⁾-Bi-Te⁽²⁾-Bi-Te⁽¹⁾의 배열로 c축에 수직 하게 적층되며, 이렇게 구성된 층을 quintuple layer라고 한다. 이런 quintuple layer가 세 개 모여서 하나의 unit cell을 형성한다. Te⁽¹⁾과 Bi 사이는 공유 이온 결합을, Bi와 Te⁽²⁾ 사이는 공 유 결합을 형성하며, 각각의 layer 사이에는 반 데르발스 결합이 존재한다. 이런 방식의 적층 구조로 인해 Bi₂Te₃는 ab면과 c축 간에 두드러 진 이방성을 보인다 [38].

Bi₂Te₃는 Sb를 도핑하거나 Sb₂Te₃와 합금을 만들어 p형 특성을 구현하고 Se를 도핑하거 나 Bi₂Te₃와 합금을 만들어 n형 특성을 구현 하기 용이하다 [40,41]. 합금 제조시 높은 에너 지밴드의 축퇴, 작은 유효질량, 높은 전하이동 도, 비교적 낮은 격자열전도도로 인해 높은 zT 값을 갖게 되어 열전소자로서 뛰어난 성능을

그림 9 ▶ (a) 육방정계 Bi₂Te₃의 결정구조 [37] 및 (b) n형 및 p형 Bi₂Te₃ 열전소자의 zT 발전 동향 [39].

보인다. Bi₂Te₃계 열전소재의 zT를 향상시키 기 위한 방법으로는 크게 두 가지가 있으며, 첫 번째는 이종원소를 합금화 하거나 도핑하여 power factor (α²o)를 높이는 것이며, 두번째는 결정에 점결함, 나노입자 등 다양한 결함을 도 입해 포논의 산란을 크게하여 격자열전도도를 낮추는 것이다 [42-44].

최근 연구에서 p형 Bi-Te계 열전소자인 bismuth antimony telluride (BST)에 인듐과 구 리를 소량 도핑하여 인듐 도핑으로 인해 생성 된 deep level과 구리 도핑으로 인해 생성된 shallow level의 상호작용을 통한 소수 캐리어 농도를 조절하는 방식으로 제작된 높은 zT값 (~1.6)을 갖는 열전소자가 보고되었다 [45]. 또 한 n형 열전소자인 bismuth telluride selenide (BTS)에 용매열합성법을 통해 제작한 나노입 자를 이용해 포논 산란을 증가시키는 방법을 통해 높은 수준으로 zT값(~1.2)을 향상시킨 열 전소자가 보고되었다 [46].

그림 10 > Reduced chemical potential과 Quality factor에 따른 따른 BizTe3의 zT값과 온도에 따른 n형 및 p형 BizTe3의 Quality factor [37].

4. 맺음말

지금까지 텔루륨의 열전소자 특성을 소개하 였으며, 텔루륨 단일원소 기반 열전소자들 뿐 만 아니라 텔루륨을 포함한 다양한 열전소자 와 그 특성들을 소개하였다. 환경 오염과 제한 된 화석 연료의 문제 등을 해결하기 위해선 열 전변환 기술의 발전이 필수적이기에 뛰어난 열전성능을 보이고 공정상 메리트를 갖는 열 전소자 연구에 대한 요구는 더욱 커질 것이다. 텔루륨은 지금까지 열전소자로서 큰 주목을 받지 못했지만, 앞서 기술한 것처럼 뛰어난 열 전소자 특성을 보이며, 화합물 열전소자가 갖 는 여러 공정상의 문제가 텔루륨 단일원소 열 전소자에는 큰 장점이 될 수 있기에 앞으로 많 은 연구가 진행될 것으로 예상된다. 지금까지 행해진 열전소자로서 텔루륨에 대한 계산 및 이론적 연구에 비해 실험적 연구 결과는 다소 부족하기 때문에, 이에 관한 다양한 실험적 연 구가 동반된다면 비교적 짧은 기간동안 비약 적인 발전이 이루어진 만큼 텔루륨 기반 열전 소자의 획기적인 연구가 기대된다. 이러한 연 구를 토대로 빠른 상용화가 이루어져 가까운 미래에는 텔루륨이 열전소자의 대표적인 소재 로 자리매김할 수 있기를 기대한다. 🚯

참/고/문/헌

- G. Tan, L. D. Zhao, and M. G. Kanatzidis, *Chem. Rev.*, 116, 12123 (2016).
 DOI: 10.1021/acs.chemrev.6b00255
- X. Shi and L. Chen, *Nat. Mater.*, 15, 691 (2016).
 DOI: 10.1038/nmat4643
- [3] X. L. Shi, J. Zou, and Z. G. Chen, *Chem. Rev.*, 120, 7399 (2020).
 DOI: 10.1021/acs.chemrev.0c00026
- [4] G. Korotcenkov, V. Brinzari, and M. H. Ham, *Crystals*, 8, 14 (2018).
 DOI: 10.3390/cryst8010014
- [5] Efficient and Dynamic The BMW Group Roadmap for the Application of Thermoelectric Generators
- [6] NASA, Enhanced Multi-Mission Radioisotope Thermoelectric Generator (eMMRTG) Concept
- M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, *Adv. Mater.*, 19, 1043 (2015).
 DOI: 10.1016/j.jallcom.2015.04.048
- [8] L. D. Zhao, J. He, D. Berardan, Y. Lin, J. F. Li, C. W. Nan, and N. Dragoe, *Energy Environ. Sci.*, 7, 2900 (2014).
 DOI: 10,1039/C4EE00997E
- W. Liu, X. Yan, G. Chen, and Z. Ren, *Nano Energy*, 1, 42 (2012).
 DOI: 10.1016/j.nanoen.2011.10.001
- [10] Lin, S., Li, W., Chen, Z., Shen, J., Ge, B., and Pei, Y., *Nat. Commun.*, 7, 10287 (2016).
 DOI: 10.1038/ncomms10287
- [11] Kim, G. H., Kang, S. H., Lee, J. M., Son, M., Lee, J., Lee, H., Chung, I., Kim, J., Kim, Y. H., Ahn, K., Park, S. K., and Kim, M. G., *Appl. Surf. Sci.*, 636, 157801 (2023).
 DOI: 10.1016/j.apsusc.2023.157801

- Qiu, G., Wang, Y., Nie, Y., Zheng, Y., Cho, K., Wu, W., and Ye, P. D., *Nano Lett.*, 18, 5760 (2018). Doi: 10.1021/acs.nanolett.8b02368
- [13] Vurgaftman, I., Meyer, J.R., Ram-Mohan, and L. R., J. Appl. Phys., 89, 5815 (2001).
 DOI: 10.1063/1.1368156
- Shi, Z., Cao, R., Khan, K., Tareen, A. K., Liu, X., Liang, W., Zhang, Y., Ma, C., Guo, Z., Luo, and X., Zhang, H., *Nano-Micro Lett.*, 12, 99 (2020).
 DOI: 10.1007/s40820-020-00427-z
- [15] H. Wang, Y. Pei, A. D. LaLonde, G. J. Snyder, Proc. Natl Acad. Sci. USA, 109, 9705 (2012).
 DOI: 10.1073/pnas.1111419109
- [16] H. J. Goldsmid, Thermoelectric refrigeration, *Plenum Press*, (1964).
- [17] K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan,
 D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis,
 Nature, 489, 414 (2012).
 DOI: 10.1038/nature11439
- Bodiul, P., Bondarchuk, N., Huber, T., Konopko,
 L., Nikolaeva, and A., Botnari, O., *Int. Conf. on Thermoelectrics* (2006)
 DOI: 10,1109/ICT,2006.331387
- [19] Gao, Z., Tao, F., and Ren, J., *Nanoscale*, 27, 1 (2018).
 DOI: 10.1039/C8NR01649F
- [20] Qiu, G., Huang, S., Segovia, M., Venuthurumilli,
 P.K., Wang, Y., Wu, W., Xu, X., and Ye, P. D.,
 Nano Lett., 19, 1955 (2019).
 DOI: 10.1021/acs.nanolett.8b05144
- [21] Ramírez-Montes, L., López-Pérez, W., González-Hernández, and R., Pinilla, *C., Int. J. Quantum Chem.*, 120, e26267 (2020).
 DOI: 10.1002/qua,26267

- [22] S. Abbey, H. Jang, B. Frimpong, N. Kumar, W. H. Nam, V. Q. Nguyen, J. H. Park, C. V. Nguyen, H. Shin, J. Y. Song, S. D. Park, S. Cho, C. Bera, J. Kang, B. G. Park, M. Al Malki, G. J. Snyder, Y. S. Jung, K. H. Hong, and M. W. Oh., *Energy Environ. Sci.*, 16, 125 (2022). DOI: 10.1039/D2EE02169B
- [23] Xiao Y. and Zhao L.D., npj Quantum Materials, 3, 55 (2018).
 DOI: 10.1038/s41535-018-0127-y
- [24] LaLonde, A.D., Pei, Y., and Snyder, G. J., *Energy Environ. Sci.*, 4, 2090 (2011).
 DOI: 10.1039/c1ee01314a
- [25] Tan G., Shi F., Hao S., Zhao L. D., Chi H., Zhang X., Uher C., Wolverton C., Dravid V. P., and Kanatzidis M. G., *Nature Commun.*, 7, 12167 (2016). DOI: 10.1038/ncomms12167
- Zhang J., Wu D., He D., Feng D., Yin M., Qin X., and He J., *Adv. Mater.*, 29, 1703148 (2017).
 DOI: 10.1002/adma,201703148
- [27] Fu L., Yin M., Wu D., Li W., Feng D., Huang L., and He J., *Energy Environ. Sci.*, 10, 2030 (2017).
 DOI: 10.1039/c7ee01871a
- [28] Jood P., Male J. P., Anand, S., Matsushita, Y., Takagiwa, Y., Kanatzidis, M. G., Snyder, G. J., and Ohta, M., *J. Am. Chem. Soc.*, 142, 15464 (2020). DOI: 10.1021/jacs.0c07067
- Hu X., Jood P., Ohta M., Kunii M., Nagase K., Nishiate H., Kanatzidis M. G., and Yamamoto A., *Energy Environ. Sci.*, 9, 517 (2016).
 DOI: 10.1039/C5EE02979A
- [30] Zhang X., Bu Z., Lin S., Chen Z., Li W., and Pei Y., Joule, 4, 986 (2020).
 DOI: 10.1016/j.joule.2020.03.004

- [31] Yang L., Chen Z. G., Dargusch M. S., and Zou J., *Energy Mater.*, 8, 1701797 (2018).
 DOI: 10.1002/aenm.201701797
- [32] Hong M., Chen Z. G., Yang L., Zou Y. C., Dargusch M. S., Wang H., and Zou J., *Adv. Mater.*, 30, 1705942 (2018).
 DOI: 10.1002/adma.201705942
- [33] Li J., Zhang X., Chen Z., Lin S., Li W., Shen J., Witting I.T., Faghaninia A., Chen Y., Jain A., Chen L., Snyder G.J., and Pei Y., *Joule*, 2, 976 (2018).
 DOI: 10.1016/j.joule.2018.02.016
- [34] Guo D., Li C., Qiu K., Yang Q., Li K., Shao B., Chen D., Ma Y., Sun J., Cao X., Zeng, W., Wang, Z., and Xie, R., *J. Alloy. Comp.*, 810, 151838 (2019).
 DOI: 10.1016/j.jallcom.2019.151838
- [35] W. D. Liu, D. Z. Wang, Q. Liu, W. Zhou, Z. Shao, and Z. G. Chen, *Adv. Energy Mater.*, 10, 2000367 (2020).
 DOI: 10,1002/aenm,202000367
- [36] M. Hong, M. Li, Y. Wang, X. L. Shi, and Z. G. Chen, *Adv. Mater.*, 35, 2208272 (2023).
 DOI: 10,1002/adma,202208272
- [37] Witting, I. T., Chasapis, T. C., Ricci, F., Peters, M., Heinz, N. A., Hautier, G., and Snyder, G. J., *Adv. Electron. Mater.*, 5, 1800904 (2019).
 DOI: 10.1002/aelm.201800904
- [38] Lee, S., Esfarjani, K., Luo, T., Zhou, J., Tian, Z., and Chen, G., *Nat. Commun.*, 5, 3525 (2014).
 DOI: 10.1038/ncomms4525
- [39] X. Tang, Z. Li, W. Liu, Q. Zhang, and C. Uher, *Adv. Mater.*, 1, 88 (2022).
 DOI: 10.1002/idm2.12009

- [40] Rowe, D.M. (Ed.). Thermoelectrics Handbook: Macro to Nano (1st ed.). CRC Press, (2006).
 DOI: 10.1201/9781420038903
- [41] Wiendlocha, B. and J. Electron. Mater., 45, 7 (2016).
 DOI: 10,1007/s11664-016-4502-9
- [42] Wu, F., Wang, W., Hu, X., Tang, and M. Prog. Nat. Sci., 27, 203 (2017)
 DOI: 10.1016/j.pnsc.2017.02.009
- [43] Ko, J., Kim, J. Y., Choi, S. M., Lim, Y. S., Seo, W.
 S., Lee, and K. H., *J. Mater. Chem. A*, 1, 12791 (2013).
 DOI: 10.1039/C3TA12623D
- [44] Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z., *Science*, 320, 634 (2008).
 DOI: 10.1126/science.1156446
- [45] S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, *Science*, 348, 109 (2015).
 DOI: 10,1126/science,aaa4166
- [46] Hong, M., Chasapis, T. C., Chen, Z. G., Yang, L., Kanatzidis, M. G., Snyder, G. J., and Zou, J., ACS Nano, 10, 4719 (2016).
 DOI: 10.1021/acsnano.6b01156

저/자/약/력

성명 학력	이 지 용 2023년 2023년 ~ 현재	성균관대학교 신소재공학과 공학사 성균관대학교 신소재공학과 석사과정
성명	김명길	
학력	2006년 2012년	한국과학기술원 화학과 이학사 Northwestern University 화학과 이학박사
경력	2012년 ~ 2012년 2013년 ~ 2014년 2014년 ~ 2019년 2019년 ~ 현재	Northwestern University 화학과 박사후연구원 Stanford University 화학과 박사후연구원 중앙대학교 화학과 부교수 성균관대학교 신소재공학과 부교수